Author: Dehning, B.
Paper Title Page
TUPC136 Analysis of Fast Losses in the LHC with the BLM System 1344
 
  • E. Nebot Del Busto, T. Baer, B. Dehning, E. Effinger, J. Emery, E.B. Holzer, A. Marsili, A. Nordt, M. Sapinski, R. Schmidt, B. Velghe, J. Wenninger, C. Zamantzas, F. Zimmermann
    CERN, Geneva, Switzerland
  • N. Fuster
    Valencia University, Atomic Molecular and Nuclear Physics Department, Valencia, Spain
  • Z. Yang
    EPFL, Lausanne, Switzerland
 
  About 3600 Ionization Chambers are located around the LHC ring to detect beam losses that could damage the equipment or quench superconducting magnets. The BLMs integrate the losses in 12 different time intervals (from 40 us to 83.8 s) allowing for different abort thresholds depending on the duration of the loss and the beam energy. The signals are also recorded in a database at 1 Hz for offline analysis. During the 2010 run, a limiting factor in the machine availability were sudden losses appearing around the ring on the ms time scale and detected exclusively by the BLM system. It is believed that such losses originate from dust particles falling into the beam, or being attracted by its strong electromagnetic field. This document describes some of the properties of these "Unidentified Falling Objects" (UFOs) putting special emphasis on their dependence on beam parameters (energy, intensity, etc). The subsequent modification of the BLM beam abort thresholds for the 2011 run that were made to avoid unnecessary beam dumps caused by these UFO losses are also discussed.  
 
WEPC170 Handling of BLM Abort Thresholds in the LHC 2382
 
  • E. Nebot Del Busto, B. Dehning, E.B. Holzer, S. Jackson, G. Kruk, M. Nemcic, A. Nordt, A. Orecka, C. Roderick, M. Sapinski, A. Skaugen, C. Zamantzas
    CERN, Geneva, Switzerland
 
  The Beam Loss Monitoring system (BLM) for the LHC consists of about 3600 Ionization Chambers located around the ring. Its main purpose is to request a beam abort when the measured losses exceed a certain threshold. The BLM detectors integrate the measured signals in 12 different time intervals (running from 40 us to 83.8 s) enabling for a different set of abort thresholds depending on the duration of the beam loss. Furthermore, 32 energy levels running from 0 to 7 TeV account for the fact that the energy density of a particle shower increases with the energy of the primary particle, i.e. the beam energy. Thus, about 1.3·106 thresholds must be handled and send to the appropriate processing modules for the system to function. These thresholds are highly critical for the safety of the machine and depend to a large part on human judgment, which cannot be replaced by automatic test procedures. The BLM team has defined well established procedures to compute, set and check new BLM thresholds, in order to avoid and/or find non-conformities due to manipulation. These procedures, as well as the tools developed to automate this process are described in detail in this document.  
 
WEPC172 Beam-induced Quench Test of a LHC Main Quadrupole 2388
 
  • A. Priebe, K. Dahlerup-Petersen, B. Dehning, E. Effinger, J. Emery, E.B. Holzer, C. Kurfuerst, E. Nebot Del Busto, A. Nordt, M. Sapinski, J. Steckert, A.P. Verweij, C. Zamantzas
    CERN, Geneva, Switzerland
  • A. Priebe
    EPFL, Lausanne, Switzerland
 
  Unexpected beam loss might lead to transition of a superconducting accelerator magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reaches a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies have been performed. The beam losses are generated by means of an orbit bump peaked in one of the main quadrupole magnets. The analysis not only includes BLM data but also data from the electrical quench protection and cryogenic systems. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat. The results are also extrapolated to higher beam energies.  
 
WEPC173 LHC Magnet Quench Test with Beam Loss Generated by Wire Scan 2391
 
  • M. Sapinski, F. Cerutti, K. Dahlerup-Petersen, B. Dehning, J. Emery, A. Ferrari, A. Guerrero, E.B. Holzer, M. Koujili, A. Lechner, E. Nebot Del Busto, M. Scheubel, J. Steckert, A.P. Verweij, J. Wenninger
    CERN, Geneva, Switzerland
 
  Beam losses with millisecond duration have been observed in the LHC in 2010 and 2011. They are expected to be provoked by dust particles falling into the beam. These losses could compromise the LHC availability if they provoke quenches of superconducting magnets. In order to investigate the quench limits for this loss mechanism, a quench test using the wire scanner has been performed, with the wire movement through the beam mimicking a loss with similar spatial and temporal distribution as in the case of dust particles. This paper will show the conclusions reached for millisecond-duration dust-provoked quench limits. It will include details on the maximum energy deposited in the coil as estimated using FLUKA code, showing good agreement with quench limit estimated from the heat transfer code QP3. In addition, information on the damage limit for carbon wires in proton beams will be presented, following electron microscope analysis which revealed strong wire sublimation.  
 
THOAA03 Overview of LHC Beam Loss Measurements 2854
 
  • B. Dehning, A.E. Dabrowski, M. Dabrowski, E. Effinger, J. Emery, E. Fadakis, V. Grishin, E.B. Holzer, S. Jackson, G. Kruk, C. Kurfuerst, A. Marsili, M. Misiowiec, E. Nebot Del Busto, A. Nordt, A. Priebe, C. Roderick, M. Sapinski, C. Zamantzas
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
 
  The LHC beam loss monitoring system based on ionization chambers is used for machine protection, quench prevention and accelerator optimization. After one full year of operation it can be stated that its main functionality, that of the protection of equipment, has proven to be very robust with no issues observed for hundreds of critical beam loss events and the number of false beam aborts well below expectation. In addition the injection, dump and collimation system make regular use of the published loss measurements for system analysis and optimisation, such as the determination of collimation efficiency in order to identify possible intensity limitations as early as possible. Intentional magnet quenches have been performed to verify both the calibration accuracy of the system and the accuracy of the loss pattern predictions from simulations. Tests have also been performed with fast loss detectors based on single- and polycrystalline CVD diamond, which are capable of providing nanosecond resolution time loss structure. This presentation will cover all of these aspects and give an outlook on future performance.  
slides icon Slides THOAA03 [1.972 MB]  
 
THPS055 Controlling Beamloss at Injection into the LHC 3553
 
  • B. Goddard, F. Alessio, W. Bartmann, P. Baudrenghien, V. Boccone, C. Bracco, M. Brugger, K. Cornelis, B. Dehning, A. Di Mauro, L.N. Drosdal, E.B. Holzer, W. Höfle, R. Jacobsson, V. Kain, M. Meddahi, V. Mertens, A. Nordt, J.A. Uythoven, D. Valuch, S. Weisz, E.N. del Busto
    CERN, Geneva, Switzerland
  • R. Appleby
    UMAN, Manchester, United Kingdom
 
  Losses at injection into the superconducting LHC can adversely affect the machine performance in several important ways. The high injected beam intensity and energy mean that precautions must be taken against damage and quenches, including collimators placed close to the beam in the injection regions. Clean injection is essential, to avoid spurious signals on the sensitive beam loss monitoring system which will trigger beam dumps. In addition, the use of the two injection insertions to house downstream high energy physics experiments brings constraints on permitted beam loss levels. In this paper the sources of injection beam loss are discussed together with the contributing factors and various issues experienced in the first full year of LHC operation. Simulations are compared with measurement, and the implemented and planned mitigation measures and diagnostic improvements are described. An outlook for future LHC operation is given.