Author: Brugger, M.
Paper Title Page
THPS055 Controlling Beamloss at Injection into the LHC 3553
 
  • B. Goddard, F. Alessio, W. Bartmann, P. Baudrenghien, V. Boccone, C. Bracco, M. Brugger, K. Cornelis, B. Dehning, A. Di Mauro, L.N. Drosdal, E.B. Holzer, W. Höfle, R. Jacobsson, V. Kain, M. Meddahi, V. Mertens, A. Nordt, J.A. Uythoven, D. Valuch, S. Weisz, E.N. del Busto
    CERN, Geneva, Switzerland
  • R. Appleby
    UMAN, Manchester, United Kingdom
 
  Losses at injection into the superconducting LHC can adversely affect the machine performance in several important ways. The high injected beam intensity and energy mean that precautions must be taken against damage and quenches, including collimators placed close to the beam in the injection regions. Clean injection is essential, to avoid spurious signals on the sensitive beam loss monitoring system which will trigger beam dumps. In addition, the use of the two injection insertions to house downstream high energy physics experiments brings constraints on permitted beam loss levels. In this paper the sources of injection beam loss are discussed together with the contributing factors and various issues experienced in the first full year of LHC operation. Simulations are compared with measurement, and the implemented and planned mitigation measures and diagnostic improvements are described. An outlook for future LHC operation is given.  
 
THPZ032 Evaluation of the Combined Betatron and Momentum Cleaning in Point 3 in Terms of Cleaning Efficiency and Energy Deposition for the LHC Collimation Upgrade 3762
 
  • L. Lari, R.W. Assmann, V. Boccone, M. Brugger, F. Cerutti, A. Ferrari, A. Rossi, R. Versaci, V. Vlachoudis, D. Wollmann
    CERN, Geneva, Switzerland
  • A. Faus-Golfe, L. Lari
    IFIC, Valencia, Spain
  • A. Mereghetti
    UMAN, Manchester, United Kingdom
 
  Funding: This work has been carried out through of the European Coordination for Accelerator Research and Development (EuCARD), co-sponsored by EU 7th Framework Program.
The Phase I LHC Collimation System Upgrade could include moving part of the Betatron Cleaning from LHC Point 7 to Point 3 to improve both operation flexibility and intensity reach. In addition, the partial relocation of beam losses from the current Betatron cleaning region at Point 7 will mitigate the risks of Single Event Upsets to equipment installed in adjacent and partly not adequate shielded areas. A combined Betatron and Momentum Cleaning scenario at Point 3 implies the installation of new collimators and a new collimator aperture layout. This paper shows the whole LHC Collimator Efficiency variation with the new layout proposed at different beam energies. As part of the evaluation, energy deposition distribution in the IR3 region gives indications about the effect of this new implementation not only on the collimators themselves but also on the other beam line elements.