Author: Brackebusch, K.
Paper Title Page
WEPC096 Calculation of High Frequency Fields in Resonant Cavities Based on Perturbation Theory* 2235
 
  • K. Brackebusch, H.-W. Glock, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  Funding: Work supported by Federal Ministry for Research and Education BMBF under contracts 05H09HR5 and 05K10HRC.
The knowledge of the eigenmodes of resonant accelerator cavities is essential for the determination of their performance characteristics, comprising resonant frequencies and field distributions inside the cavities. Apart from the material properties the eigenmodes of a cavity depend on its geometry. In spite of the high elaborateness during the complex fabrication process, minor deviations of the actual cavity shape from the desired one are inevitable. Moreover, especially superconducting cavities are subject to extreme operating conditions that may cause deformations of their shape. Any geometry perturbation results in a shift of the resonant frequencies and modified field distributions. In this paper, we will analyze a generalization of Slater's theorem proposed in literature. The method should allow for the calculation of resonant frequencies and field distributions of a slightly perturbed cavity by using a set of precomputed eigenmodes of the unperturbed cavity. We will evaluate the practicability of the method by applying it to cavity geometries for which the eigenmodes are analytically known, ascertain the effort of reasonable calculation results and describe its limitations.