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Abstract

The knowledge of the eigenmodes of resonant accelera-
tor cavities is essential for the determination of their per-
formance characteristics, comprising resonant frequencies
and field distributions inside the cavities. Apart from the
material properties the eigenmodes of a cavity depend on
its geometry. In spite of the high elaborateness during the
complex fabrication process, minor deviations of the actual
cavity shape from the desired one are inevitable. Moreover,
especially superconducting cavities are subject to extreme
operating conditions that may cause deformations of their
shape. Any geometry perturbation results in a shift of the
resonant frequencies and modified field distributions. In
this paper, we will analyse a generalisation of Slater’s the-
orem [1] proposed in literature [2], [3]. The method al-
lows for the calculation of resonant frequencies and field
distributions of a slightly perturbed cavity by using a set
of precomputed eigenmodes of the unperturbed cavity. We
will evaluate the practicability of the method by applying
it to cavity geometries for which the eigenmodes are ana-
lytically known, ascertain the effort to achieve reasonable
calculation results and describe its limitations.

Figure 1: Ideal (left) and actual perturbed cavity (right).

INTRODUCTION

Assuming the geometry and the eigenmodes of a cavity
are given, Slater’s theorem [1] offers a possibility to calcu-
late the shift of the resonant frequencies which arises if the
cavity’s geometry is slightly deformed (Fig. 1). The reso-
nant frequency ω̃i of each mode of the perturbed geometry
may be computed by evaluating the following volume inte-
grals

ω̃i − ωi

ωi
=

∫∫∫

ΔV

(
μ| �Hi(�r)|2 − ε| �Ei(�r)|2

)
dV

∫∫∫

V

(
μ| �Hi(�r)|2 + ε| �Ei(�r)|2

)
dV

. (1)
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Here �Ei(�r), �Hi(�r) and ωi are the stationary electric, the
stationary magnetic field and the resonant frequency of the
ith mode inside the volume V of the unperturbed cavity.
The permittivity and the permeability inside the cavity are
denoted with ε and μ. ΔV is the volume which is re-
moved by the deformation. Since ΔV has to be a part of
V , only volume reductions can be treated. The term in the
denominator is identical to four times the mode’s energy
Ui. Hence, if the energy of all modes is normalized, only
the integral over ΔV needs to be evaluated.

However, Slater’s theorem (ST) does not allow to deter-
mine the field distributions inside the perturbed geometry.
In [2] an approach is presented that generalises ST to pro-
vide also information about the fields inside the deformed
cavity. An almost identical method is introduced in [3].
Knowing also the fields, any further cavity characteristic
may be determined. Since no application examples (except
a single one in [2]) are known from literature the applica-
bility of the approach shall be examined.

THEORY

The fundamental idea of the procedure denoted in [3] as
General Perturbation Theory (GPT) is to derive a certain
mode of the perturbed geometry not only from the corre-
sponding unperturbed mode (like in ST) but also from other
modes of the unperturbed cavity. The entirety of the sta-
tionary fields of modes inside the unperturbed cavity form
a system of mutually orthogonal functions [3]

μ

2Ui

∫∫∫

V

�Hi(�r) · �Hk(�r) dV = δik, (2)

ε

2Ui

∫∫∫

V

�Ei(�r) · �Ek(�r) dV = δik (3)

where δik is the Kronecker Delta. The relationship is valid
for all unperturbed modes as long as the integration takes
place over the complete volume V . The orthogonality of
the modes and the completeness of the set allows to expand

each stationary electric and magnetic field �̃Ei(�r),
�̃Hi(�r) of

the perturbed geometry in terms of the unperturbed fields

�̃Ei(�r) =
∞∑

k=1

αik · �Ek(�r), (4)

�̃Hi(�r) =
∞∑

k=1

βik · �Hk(�r). (5)

The weighting factors αik and βik are derived following [3].
Summarising, the interactions of unperturbed modes inside
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the deformed volume part ΔV are analysed and used to
approximate the perturbed modes. The interaction terms
are similar to the volume integrals used for ST (Eq. 1) but
they consider not only the interaction of a mode i with itself
but also with every other mode k

sik = 2
∫∫∫

ΔV

(
ωiμ �Hi(�r) · �Hk(�r) − ωkε �Ei(�r) · �Ek(�r)

)
dV.

(6)
In [3] the constant factor 2 for the s ik was not mentioned,
but it is required for reasons given in [2]. Using the inter-
action terms sik two matrices A and B may be formed with
the elements

aik = ωi
2δik +

ωk

2Ui
sik, (7)

bik = ωi
2δik +

ωi

2Ui
sik. (8)

Calculating the eigenvectors of A (B) finally yields all
αik (βik). Each eigenvector contains the weighting fac-

tors to expand the perturbed stationary field �̃Ei(�r) ( �̃Hi(�r))
of exactly one mode. The corresponding eigenvalue is
the squared perturbed resonant frequency ω̃ i of that mode
(which is identical for A and B). Intrinsically only pertur-
bations leading to a reduction of the volume V can be han-
dled. To treat an enlarged perturbed volume Ṽ , V and like-
wise its mode set have to be scaled until the scaled volume
contains the complete perturbed volume Ṽ . Afterwards the
GPT can be applied as usual.

APPLICATION

For obvious technical reasons the number of unperturbed
modes M used to compute the perturbed ones has to be fi-
nite. In consequence the expanded modes are only an ap-
proximation. To analyse the applicability and accuracy of
the method, it was applied to cavity structures where both
the unperturbed and the perturbed eigenmodes are analyti-
cally known. Therefore uniform radial and longitudinal
variations were applied to cylindrical and coaxial cavities.
To validate the implementation of the method with com-
mon numerical solvers, the set of unperturbed modes was
also computed by CST Microwave Studio’s Eigenmode
Solver AKS [4]. In the following section selected results
of a cylindrical cavity are shown.

RESULTS

Analytical Results

Even for a small mode set the perturbed resonant fre-
quencies ω̃i calculated with GPT are significantly more ac-
curate than the results of ST. Fig. 2 shows the relative error
of the perturbed resonant frequency (in relation to the ac-
tual resonant frequency ω̂ i) depending on the mode order i.
It is clearly evident that the error of GPT is more than two
orders of magnitude smaller than the error of ST. Likewise,
the approximated stationary fields (like it is shown e.g. for

2 3 4 5 6 7 8
i

�3

�2

�1

Log10��Ω
� �Ω� ��Ω� �

Slater

GPT

Figure 2: ΔR/R = 5%, M = 54: The relative error of ω̃ i

of GPT is less than 10−3, the one of ST is up to 0.05.
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Figure 3: M = 54, ΔR/R=5% (a,b) , ΔR/R=20% (c):
(a,c) The field Ẽz of GPT and the actual field Êz coincide
so well that only two lines can be observed. (b) The devia-
tion of Ẽz along the radius r is almost everywhere less than
10−3 of its maximal value. Close to the perturbed bound-
ary it increases.

the longitudinal electrical field Ẽz(�r) in Fig. 3) match the
actual ones (Êz(�r)) excellently. Even for substantial per-
turbations the fields coincide very well (Fig. 3(c)). For
modes of lower order the deviation between ω̃ i and ω̂i con-
verges towards zero as the size M of the mode set increases
(Fig. 4). A set of 50 unperturbed modes already provides
results with a relative deviation of less than 10−3.

Considering modes of higher order a serious problem oc-
curs. The error of ω̃i increases step-like if a certain mode
order icrit is reached (Fig. 5). Any results incipient from
the critical mode are unsuitable since the relative error lies
in the range of the relative geometry variation. This abrupt
loss of accuracy is caused by the interaction terms s ik. For
both ST and GPT each sik constitutes an approximation
where unknown parameters of the perturbed cavity are sub-
stituted by the unperturbed ones. If the order (or rather the
frequency) of one mode reaches icrit, the signs of the numer-
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Figure 4: The relative error of ω̃TM 010 converges with a
similar decay towards zero for different radius reductions
(depending on the size M of the mode set).
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Figure 5: ΔR/R = 1%: At the 50th mode the error of GPT
increases abruptly, so that the results become invalid.

ators of Eq. 1 and 6 change irregularly. (In specific cases
the numerators may also become zero.) This leads to incor-
rect results. The critical value icrit and thereby the maximal
number Nmax of modes with reasonable results are only de-
termined by the perturbed volume part ΔV . Increasing the
size M of the mode set does not improve this limitation
at all. For one-dimensional perturbations of coaxial and
cylindrical cavities it can be proven that

icrit =
⌈

ξ

2Δξ

⌉

, (9)

Nmax =
⌈

ξ

2Δξ

⌉

− 1. (10)

Here Δξ
ξ is the relative one-dimensional reduction of the

cavity. Hence, for geometry variations of e.g. 10% only 4
modes can be determined.

Numerical Results

The use of numerically computed unperturbed modes is
related with some difficulties. Since only the stationary
fields in the (small) volume part ΔV are used for the in-
teraction terms sik, the grid resolution needs to have an
appropriate density to reproduce the fields adequately ac-
curate. As it is only possible to compute the entire fields a
high overhead concerning the computational effort and the
data amount is unavoidable. A more serious problem is the
fact that ΔV is a volume at the cavity’s boundary. Hence
the fields inside ΔV may contain serious inaccuracies due
to the geometry error. This is illustrated on the example of
the finite integration technique in Fig. 6. If the whole vol-
ume V were considered the geometry error would scarcely
effect the results, but if considering only ΔV its influence
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Figure 6: Unperturbed TM010 mode of cylindrical cavity:
The numerically computed field is forced to zero at the
boundary since grid points and boundary do not coincide.
Thus, it differs considerably from the analytical field.

is very high. By extrapolating the field close to the bound-
ary the error can be reduced. In doing so the field com-
ponents normal and tangential to the boundary have to be
determined and treated separately because of the different
boundary conditions. However, this requires additional ef-
fort. Therefore it is intended to use numerical techniques
that are more suited to compute the boundary fields.

CONCLUSIONS

The General Perturbation Theory as described in [2], [3]
is suitable to calculate very accurate results for the reso-
nant frequency and the stationary field of the eigenmodes
of a perturbed cavity. The accuracy increases by the size of
the set of unperturbed modes used for the computation. Al-
ready for a small set of modes, the method supplies much
better results for the resonant frequencies than Slater’s the-
orem does. However, the computation of usable results is
limited to a maximal mode order, which decreases with in-
creasing geometrical perturbation. Therefore, the method’s
application range is restricted in the extent of the pertur-
bation and/or the number of ascertainable modes. The use
of common numerical solvers to determine the unperturbed
set of modes is not straightforward, since the numerical re-
sults have to reproduce the fields adequately close to the
boundary, while many numerical methods hold inaccura-
cies in particular in that region.
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