Author: Biasci, J.C.
Paper Title Page
TUPS001 Upgrade of the ESRF Vacuum System 1515
 
  • M. Hahn, J.C. Biasci, H.P. Marques, A. Meunier
    ESRF, Grenoble, France
 
  The upgrade program of the ESRF concerns in terms of electron storage ring vacuum chambers mainly the insertion device (ID) sectors. Here the length available for the production of intense synchrotron light is being increased from five to six or even seven meters. The presence of canted ID sectors where two independent synchrotron light beams will be produced in the same straight section requires new quadrupole chambers compatible with the new geometry. A number of long insertion device vacuum chambers for the new ID sectors has already been produced by ESRF and coated with non-evaporable getter (NEG) material, a new generation of in vacuum undulators for the extended ID sections are under preparation. This paper outlines the status of the modification of the vacuum system and informs about consequences for the ESRF NEG coating activity and some recent improvements of the vacuum measurement and control system.  
 
THPC009 Performance and Upgrade of the ESRF Light Source 2924
 
  • J.-L. Revol, J.C. Biasci, J-F. B. Bouteille, J. Chavanne, F. Ewald, L. Farvacque, A. Franchi, G. Gautier, L. Goirand, M. Hahn, L. Hardy, J. Jacob, J.M. Koch, M.L. Langlois, G. Lebec, J.M. Mercier, T.P. Perron, E. Plouviez, K.B. Scheidt, V. Serrière
    ESRF, Grenoble, France
 
  The European Synchrotron Radiation Facility (ESRF) is now fully engaged in a large Upgrade Programme of its infrastructure, beamlines and X ray source. In this context, a first set of 10 insertion device straight sections are being lengthened from five to six metres; a number of them will be operated with canted undulators. The insertion devices are themselves subject to an ambitious development programme to fulfil the scientific requirements. The Radio Frequency system upgrade has started with the replacement of the booster klystron-based transmitter by high power solid state amplifiers, and the development of HOM damped cavities operating at room temperature. A completely new DC-AC orbit stabilization system using 224 BPMs and 96 orbit steerers is currently being commissioned. The upgrade is conducted while keeping, and even improving, routine performance for the user service. In particular the recent installation of new skew quadrupole power supplies allows routine operation with ultra low vertical emittance. This paper reports on the present operation performance of the source, highlighting recent developments and those still to come.