Author: Balhan, B.
Paper Title Page
WEPS019 Study of a Rapid Cycling Synchrotron to Replace the CERN PS Booster 2523
 
  • K. Hanke, O. Aberle, M. E. Angoletta, B. Balhan, W. Bartmann, M. Benedikt, J. Borburgh, D. Bozzini, C. Carli, P. Dahlen, T. Dobers, M. Fitterer, R. Garoby, S.S. Gilardoni, B. Goddard, J. Hansen, T. Hermanns, M. Hourican, S. Jensen, A. Kosmicki, L.A. Lopez Hernandez, M. Meddahi, B. Mikulec, A. Newborough, M. Nonis, S. Olek, M.M. Paoluzzi, S. Pittet, B. Puccio, V. Raginel, I. Ruehl, H.O. Schönauer, L. Sermeus, R.R. Steerenberg, J. Tan, J. Tückmantel, M. Vretenar, M. Widorski
    CERN, Geneva, Switzerland
 
  CERN’s proton injector chain is undergoing a massive consolidation and upgrade program in order to deliver beams meeting the needs of the LHC Luminosity Upgrade. As an alternative to the upgrade of the existing Proton Synchrotron Booster (PSB), the construction of a Rapid Cycling Synchrotron (RCS) has been studied. This machine would replace the PSB and deliver beams to the LHC as well as to CERN’s rich fixed-target physics program. This paper summarizes the outcome of the feasibility study along with a tentative RCS design.  
 
THPS054 Injection and Extraction Considerations for a 2 GeV RCS at CERN 3550
 
  • W. Bartmann, B. Balhan, J. Borburgh, L. Ducimetière, M. Fitterer, B. Goddard, L. Sermeus
    CERN, Geneva, Switzerland
 
  Conceptual studies have been made for a 2 GeV RCS at CERN as a possible replacement of the four-ring PS Booster. The lattice design has to accommodate suitable straight sections for a 160 MeV H charge exchange injection system, and for a 2 GeV fast extraction system. The design constraints for the injection and extraction systems are described, together with the proposed concepts and potential equipment limitations. In particular, the features of different possible H injection configurations are compared.