Author: Argyropoulos, T.
Paper Title Page
MOPC054 The LHC RF System - Experience with Beam Operation 202
 
  • P. Baudrenghien, M. E. Angoletta, T. Argyropoulos, L. Arnaudon, J. Bento, T. Bohl, O. Brunner, A.C. Butterworth, E. Ciapala, F. Dubouchet, J. Esteban Muller, D.C. Glenat, G. Hagmann, W. Höfle, D. Jacquet, M. Jaussi, S. Kouzue, D. Landre, J. Lollierou, P. Maesen, P. Martinez Yanez, T. Mastoridis, J.C. Molendijk, C. Nicou, J. Noirjean, G. Papotti, A.V. Pashnin, G. Pechaud, J. Pradier, J. Sanchez-Quesada, M. Schokker, E.N. Shaposhnikova, D. Stellfeld, J. Tückmantel, D. Valuch, U. Wehrle, F. Weierud
    CERN, Geneva, Switzerland
 
  The LHC RF system commissioning with beam and physics operation for 2010 and 2011 are presented. It became clear in early 2010 that RF noise was not a lifetime limiting factor: the crossing of the much feared 50 Hz line for the synchrotron frequency did not affect the beam. The broadband LHC RF noise is reduced to a level that makes its contribution to beam diffusion in physics well below that of Intra Beam Scattering. Capture losses are also under control, at well below 0.5%. Longitudinal emittance blow-up, needed for ramping of the nominal intensity single bunch, was rapidly commissioned. In 2011, 3.5 TeV/beam physics has been conducted with 1380 bunches at 50 ns spacing, corresponding to 55% of the nominal current. The intensity per bunch (1.3 ·1011 p) is significantly above the nominal 1.15 ·1011. By August 2011 the LHC has accumulated more than 2 fb-1 integrated luminosity, well in excess of the 1 fb-1 target for 2011.  
 
MOPC057 Loss of Landau Damping in the LHC 211
 
  • E.N. Shaposhnikova, T. Argyropoulos, P. Baudrenghien, T. Bohl, A.C. Butterworth, J. Esteban Muller, T. Mastoridis, G. Papotti, J. Tückmantel, W. Venturini Delsolaro, U. Wehrle
    CERN, Geneva, Switzerland
  • C.M. Bhat
    Fermilab, Batavia, USA
 
  Loss of Landau damping leading to a single bunch longitudinal quadrupole instability has been observed in the LHC during the ramp and on the 3.5 TeV flat top for small injected longitudinal emittances. The first measurements are in good agreement with the threshold calculated for the expected longitudinal reactive impedance budget of the LHC as well as with the threshold dependence on beam energy. The cure is a controlled longitudinal emittance blow-up during the ramp which for constant threshold through the cycle should provide an emittance proportional to the square root of energy.  
 
MOPS009 Probing Intensity Limits of LHC-type Bunches in the CERN SPS with Nominal Optics 610
 
  • B. Salvant, G. Adrian, D.J. Allen, O. Andujar, T. Argyropoulos, J. Axensalva, J. Baldy, H. Bartosik, S. Cettour Cave, F. Chapuis, J.F. Comblin, K. Cornelis, D.G. Cotte, K. Cunnington, H. Damerau, M. Delrieux, J.L. Duran-Lopez, A. Findlay, J. Fleuret, F. Follin, P. Freyermuth, H. Genoud, S.S. Gilardoni, A. Guerrero, S. Hancock, K. Hanke, O. Hans, R. Hazelaar, W. Höfle, L.K. Jensen, J. Kuczerowski, Y. Le Borgne, R. Maillet, D. Manglunki, S. Massot, E. Matli, G. Metral, B. Mikulec, E. Métral, J.-M. Nonglaton, E. Ovalle, L. Pereira, F.C. Peters, A. Rey, J.P. Ridewood, G. Rumolo, J.L. Sanchez Alvarez, E.N. Shaposhnikova, R.R. Steerenberg, R.J. Steinhagen, J. Tan, B. Vandorpe, E. Veyrunes
    CERN, Geneva, Switzerland
 
  Some of the upgrade scenarios of the high-luminosity LHC require large intensity per bunch from the injector chain. Single bunch beams with intensities of up to 3.5 to 4·1011 p/b and nominal emittances were successfully produced in the PS Complex and delivered to the SPS in 2010. This contribution presents results of studies with this new intense beam in the SPS to probe single bunch intensity limitations with nominal gamma transition. In particular, the vertical Transverse Mode Coupling Instability (TMCI) threshold with low chromaticity was observed at 1.6·1011 p/b for single nominal LHC bunches in the SPS. With increased vertical chromaticity, larger intensities could be injected, stored along the flat bottom and accelerated up to 450 GeV/c. However, significant losses and/or transverse emittance blow up were then observed. Longitudinal and transverse optimization efforts in the PSB, PS and SPS were put in place to minimize this beam degradation and succeeded to obtain single 2.3·1011 p/b LHC type bunches with satisfying parameters at extraction of the SPS.  
 
MOPS010 Experimental Studies with Low Transition Energy Optics in the SPS 613
 
  • H. Bartosik, T. Argyropoulos, T. Bohl, S. Cettour Cave, K. Cornelis, J. Esteban Muller, Y. Papaphilippou, G. Rumolo, B. Salvant, E.N. Shaposhnikova, J. Wenninger
    CERN, Geneva, Switzerland
 
  The optics of the SPS can be tuned to lower transition energy such that the slippage factor at injection is raised by a factor of almost 3. From theory, an increase of the intensity thresholds for transverse mode coupling, longitudinal coupled bunch and longitudinal instabilities due to the loss of Landau damping can be expected. In this paper, experimental studies in the SPS with single bunches of protons with intensities of up to 3.5·1011 p/b on the flat bottom and at 450 GeV/c are presented. Longitudinal instabilities were studied with LHC-type beams with 50~ns spacing and injected intensities up to 1.8·1011 p/b. The measurements address the increase of intensity thresholds and the achievable transverse emittances in the new low gamma transition optics with respect to the nominal SPS optics. The obtained results are compared with numerical simulations.