Author: Afonso Rodriguez, V.
Paper Title Page
TUPO005 Design Optimization for a Non-Planar Undulator for the JETI-Laser Wakefield Accelerator in Jena 1452
 
  • V. Afonso Rodriguez, T. Baumbach, A. Bernhard, G. Fuchert, A. Keilmann, P. Peiffer, C. Widmann
    KIT, Karlsruhe, Germany
  • M. Kaluza, M. Nicolai
    IOQ, Jena, Germany
  • R. Rossmanith
    Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
 
  In a laser wakefield accelerator (LWFA), excited by a femtosecond laser pulse electrons are accelerated to several 100 MeV within a few centimeters. The energy spread of the electron beam is relatively large and varies from shot to shot. In order to obtain monochromatic photons in an undulator despite the energy spread, the following idea was proposed. Two bending magnets and a drift space in between produces dispersion so that particles with different energies have different transverse positions. The beam enters a non-planar undulator, e.g. cylindrical pole geometry, where the K-value also varies with transverse position. If the two variations in the transverse direction (particle energy and K-value) compensate each other the generated light is more monochromatic than with a conventional planar undulator. In this paper such a modified undulator design optimized for the JETI-LWFA in Jena is presented. An experiment to test this concept is in preparation.  
 
TUPO006 Design of a Dispersive Beam Transport Line for the JETI Laser Wakefield Accelerators 1455
 
  • C. Widmann, V. Afonso Rodriguez, T. Baumbach, A. Bernhard, P. Peiffer
    KIT, Karlsruhe, Germany
  • M. Kaluza, M. Nicolai
    IOQ, Jena, Germany
  • R. Rossmanith
    Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
 
  Laser wakefield accelerators (LWFA) emit electrons with energies of a few 100 MeV at very short bunch lengths while having a compact design. However, electron bunches from LWFA show a larger energy spread than those of conventional accelerators. This is a challenge when using these bunches e.g. to generate radiation in an undulator. A possible strategy to cope with that is to spectrally disperse the bunch and match the resulting spatial distribution with a spatially varying undulator field amplitude. For realizing the dispersion a pair of dipole magnets is used. The electrons leaving this dipole chicane have to meet certain requirements imposed by the undulator: In the deflection plane the beam has to be collimated and its energy distribution must match the undulator field. In the other transversal plane the beam has to be focussed on the center of the undulator keeping the value of the beta function small. To include this in the compact design of the setup, a combination of specially designed quadrupole and sextupole magnets is employed. In this contribution the design of the setup and the results of the particle tracking through this chicane are presented.