Keyword: interlocks
Paper Title Other Keywords Page
MOPV013 A Dynamic Beam Scheduling System for the FAIR Accelerator Facility timing, controls, storage-ring, experiment 138
 
  • S. Krepp, J. Fitzek, H.C. Hüther, R. Mueller, A. Schaller, A. Walter
    GSI, Darmstadt, Germany
 
  The new Accelerator Control System for GSI/FAIR is now being used productively for the GSI accelerator facility. As the central component for online beam orchestration, the Beam Scheduling System (BSS) is situated between the FAIR Settings Management System and the FAIR timing system. Besides device settings, the Settings Management System provides timing schedules for beam production. The primary purpose of the BSS is to define which of the beam schedules are executed by the timing system, how often and in which order. To provide runtime decisions in pre-planned execution options (e.g. skipping of a particular beam), it processes external signals like user input, experiment requests or beam prohibits provided by the interlock system. More recently, advanced features have been added that allow for dynamic execution control required by storage ring mode features such as breakpoints, repetitions, skipping and manipulations. This contribution gives an overview of the Beam Scheduling System including its interfaces.  
poster icon Poster MOPV013 [0.366 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV013  
About • Received ※ 10 October 2021       Revised ※ 01 November 2021       Accepted ※ 03 November 2021       Issue date ※ 11 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV031 LHC Vacuum Supervisory Application for Run 3 vacuum, controls, PLC, hardware 459
 
  • S. Blanchard, I.A. Amador, N. Chatzigeorgiou, R. Ferreira, J.D. Francisco Rebelo, P. Gomes, C.V. Lima, G. Pigny, A.P. Rocha, L. Zygaropoulos
    CERN, Geneva, Switzerland
 
  The LHC Vacuum Supervisory Control and Data Acquisition application has been upgraded to fulfil the new requirements of Long Shutdown 2 and Run 3. The number of datapoint elements has been increased from 700k to 1.5M, which constitutes a challenge in terms of scalability. The new configuration of pumping station control hardware has led to an increase in the number of permanently connected PLCs from 150 to almost 300. A new concept has been developed and deployed, in which the PLC configuration is updated online. The goals were to automate, and to speed up periodic updates of the control system. Integrating of the wireless mobile equipment had led to the acquisition of expertise in dealing with temporary connections and dynamic insertion of device representation in the synoptic. Other new features include: the introduction of an innovative remote control and representation in synoptic panel of hardware interlocks, the development of a pre-configured notification system, and the integration of asset management into the user interface.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV031  
About • Received ※ 05 October 2021       Revised ※ 17 October 2021       Accepted ※ 20 November 2021       Issue date ※ 11 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)