Author: Silva, G.G.
Paper Title Page
MOBR03 Hexapod Control System Development Towards Arbitrary Trajectories Scans at Sirius/LNLS 84
  • A.Y. Horita, F.A. Del Nero, G.N. Kontogiorgos, M.A.L. Moraes
    LNLS, Campinas, Brazil
  • G.G. Silva
    UNICAMP, Campinas, São Paulo, Brazil
  Modern 4th generation synchroton facilities demand high precision and dynamic manipulation systems capable of fine position control, aiming to improve the resolution and perfomance of their experiments. In this context, hexapods are widely used to obtain a flexible and accurate 6 Degrees of Freedom (DoF) positioning system, as they are based on Parallel Kinematic Mechanisms (PKM). Aiming the customization and governability of this type of motion control system, a software application was entirely modeled and implemented at Sirius. A Bestec hexapod was used and the control logic was embedded into an Omron Delta Tau Power Brick towards the standardization of Sirius control solutions with features which completely fill the beamline scan needs, e.g. tracing arbitrary trajectories. Newton-Raphson numerical method was applied to implement the PKM. Besides, the kinematics was implemented in C language, targeting a better runtime performance when comparing to script languages. This paper describes the design and implementation methods used in this control application development and presents its resulting performance.  
slides icon Slides MOBR03 [3.545 MB]  
DOI • reference for this paper ※  
About • Received ※ 10 October 2021       Revised ※ 17 October 2021       Accepted ※ 20 November 2021       Issue date ※ 19 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)