Author: Pollard, A.E.
Paper Title Page
WEPV020 Learning to Lase: Machine Learning Prediction of FEL Beam Properties 677
 
  • A.E. Pollard, D.J. Dunning
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Maheshwari
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Accurate prediction of longitudinal phase space and other properties of the electron beam are computationally expensive. In addition, some diagnostics are destructive in nature and/or cannot be readily accessed. Machine learning based virtual diagnostics can allow for the real-time generation of longitudinal phase space and other graphs, allowing for rapid parameter searches, and enabling operators to predict otherwise unavailable beam properties. We present a machine learning model for predicting a range of diagnostic screens along the accelerator beamline of a free-electron laser facility, conditional on linac and other parameters. Our model is a combination of a conditional variational autoencoder and a generative adversarial network, which generates high fidelity images that accurately match simulation data. Work to date is based on start-to-end simulation data, as a prototype for experimental applications.  
poster icon Poster WEPV020 [1.330 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV020  
About • Received ※ 10 October 2021       Revised ※ 22 October 2021       Accepted ※ 28 December 2021       Issue date ※ 25 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV021 Machine Learning for RF Breakdown Detection at CLARA 681
 
  • A.E. Pollard, D.J. Dunning, A.J. Gilfellon
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Maximising the accelerating gradient of RF structures is fundamental to improving accelerator facility performance and cost-effectiveness. Structures must be subjected to a conditioning process before operational use, in which the gradient is gradually increased up to the operating value. A limiting effect during this process is breakdown or vacuum arcing, which can cause damage that limits the ultimate operating gradient. Techniques to efficiently condition the cavities while minimising the number of breakdowns are therefore important. In this paper, machine learning techniques are applied to detect breakdown events in RF pulse traces by approaching the problem as anomaly detection, using a variational autoencoder. This process detects deviations from normal operation and classifies them with near perfect accuracy. Offline data from various sources has been used to develop the techniques, which we aim to test at the CLARA facility at Daresbury Laboratory. These techniques could then be applied generally.  
poster icon Poster WEPV021 [1.565 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV021  
About • Received ※ 09 October 2021       Accepted ※ 21 November 2021       Issue date ※ 24 November 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)