Author: Pilliaud, B.
Paper Title Page
TUPV042 Collision Avoidance Systems in Synchrotron SOLEIL 501
 
  • C. Engblom, S. Akinotcho, L. Amelineau, D.C. Corruble, P. Monteiro, L.E. Munoz, B. Pilliaud, G. Thibaux, S. Zhang
    SOLEIL, Gif-sur-Yvette, France
  • S. Bouvel
    EFOR, Levallois Perret, France
 
  Beamlines at Synchrotron SOLEIL are finding that their experimental setups (in respect to their respective sample environments, mechanical systems, and detectors) are getting more constrained when it comes to motorized manoeuvrability - an increasing number of mechanical instruments are being actuated within the same workspace hence increasing the risk of collision. We will in this paper outline setups with two types of Collision Avoidance Systems (CAS): (1) Static-CAS applications, currently being employed at the PUMA and NANOSCOPIUM beamlines, that use physical or contactless sensors coupled with PLC- and motion control- systems; (2) Dynamic-CAS applications, that use dynamic anti-collision algorithms combining encoder feedback and 3D-models of the system environment, implemented at the ANTARES and MARS beamlines but applied using two different strategies.  
poster icon Poster TUPV042 [1.670 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV042  
About • Received ※ 10 October 2021       Revised ※ 20 October 2021       Accepted ※ 21 December 2021       Issue date ※ 17 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)