Author: Luo, J.
Paper Title Page
MOPV032 Design of a Component-Oriented Distributed Data Integration Model 202
 
  • Z. Ni, L. Li, J. Liu, J. Luo, X. Zhou
    CAEP, Sichuan, People’s Republic of China
 
  The control system of large scientific facilities is composed of several heterogeneous control systems. As time goes by, the facilities need to be continuously upgraded and the control system also needs to be upgraded. This is a challenge for the integration of complex and large-scale heterogeneous systems. This article describes the design of a data integration model based on component technology, software middleware(The Apache Thrift*) and real-time database. The realization of this model shields the relevant details of the software middleware, encapsulates the remote data acquisition as a local function operation, realizes the combination of data and complex calculations through scripts, and can be assembled into new components.
*The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently.
 
poster icon Poster MOPV032 [1.325 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV032  
About • Received ※ 09 October 2021       Accepted ※ 04 November 2021       Issue date ※ 19 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPV007 Fast Creation of Control and Monitor Graphical User Interface for PEPC of Laser Fusion Facility Based on ICSFF 871
 
  • L. Li, J. Luo, Z. Ni
    CAEP, Sichuan, People’s Republic of China
 
  Plasma electrode Pockels cell (PEPC) is the key unit of the multi-pass amplify system in laser fusion facility, whether the PEPC is effective determined the success rate of the facility experiment directly. The operator needs to conduct remote control and monitor during the facility is running, also can automatically judge whether the pulse discharge waveform is regular online. We have designed a software framework (ICSFF) that loads all GUI widget elements related to control and monitor into board through plug-ins, and then by setting the respective properties, data source and built-in script of each widget achieve patterns like point control, flow control and other complex combined control, can also achieve data acquisition and varied display effects. It allows the operator drag and drop widget freely and configure the widget properties through the interface in a non-programming mode to quickly build the GUI they need. It not only apply to PEPC in facility, but also to other system in the same facility. ICSFF supports Tango control system right now, and more control systems will be supported in the future.  
poster icon Poster THPV007 [1.577 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-THPV007  
About • Received ※ 10 October 2021       Revised ※ 22 October 2021       Accepted ※ 21 November 2021       Issue date ※ 28 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPV036 Laser Driver State Estimation Oriented Data Governance 942
 
  • J. Luo, L. Li, Z. Ni, X. Zhou
    CAEP, Sichuan, People’s Republic of China
 
  Laser driver state estimation is an important task dur-ing the operation process for the high-power laser facility, by utilizing measured data to analyze experiment results and laser driver performances. It involves complicated data processing jobs, including data extraction, data cleaning, data fusion, data visualization and so on. Data governance aims to improve the efficiency and quality of data analysis for laser driver state estimation, which fo-cuses on 4 aspects ’ data specification, data cleaning, data exchange, and data integration. The achievements of data governance contribute to not only laser driver state estimation, but also other experimental data analy-sis applications.  
poster icon Poster THPV036 [0.477 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-THPV036  
About • Received ※ 10 October 2021       Revised ※ 24 October 2021       Accepted ※ 21 November 2021       Issue date ※ 22 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)