
DESIGN OF A COMPONENT-ORIENTED DISTRIBUTED DATA INTE-

GRATION MODEL

Z. G. Ni†, L Li, J. Luo, J. Liu, X. W. Zhou, Institute of Computer Application, China Academy of
Engineering Physics, Mianyang City, China

Abstract

The control system of large scientific facilities is com-
posed of several heterogeneous control systems. As time
goes by, the facilities need to be continuously upgraded and
the control system also needs to be upgraded. This is a chal-
lenge for the integration of complex and large-scale heter-
ogeneous systems. This article describes the design of a
data integration model based on component technology,
software middleware (The Apache Thrift*) and real-time
database. The realization of this model shields the relevant
details of the software middleware, encapsulates the re-
mote data acquisition as a local function operation, realizes
the combination of data and complex calculations through
scripts, and can be assembled into new components.

INTRODUCTION
Large scientific experimental devices generally consist

of dozens of heterogeneous systems, each of which is also
an independent control system. The control system archi-
tecture of a typical large scientific facilities is a two-tier
architecture consisting of a monitoring layer of the network
structure and a control layer of the fieldbus structure. The
monitoring layer is deployed on the virtual server and the
console computer to provide centralized operations for
control, status, and data storage. The control layer is de-
ployed on the virtual server or embedded controller to pro-
vide real-time collection and control of the device.

Figure 1: The control system architecture of the typical

large scientific facilities [1].

As provided in Fig. 1, the monitoring layer is a software
system based on Ethernet structure. It consists of a network
switching system, a server system, and a console computer.
It provides system services and human-machine interfaces
for the facility control system, including control, monitor-
ing, and data management.

At present, the integrated control system mainly used by
large-scale laboratories and scientific research institutions
around the world is EPICS or TANGO. In the automation

industry, excellent instrument manufacturers will not only
provide corresponding secondary development libraries,
but also corresponding EPICS interfaces or TANGO De-
vices.

EPICS[2] is a set of software tools and applications
which provide a software infrastructure for use in building
distributed control systems to operate devices such as Par-
ticle Accelerators, Large Experiments and major Tele-
scopes. Such distributed control systems typically com-
prise tens or even hundreds of computers, networked to-
gether to allow communication between them and to pro-
vide control and feedback of the various parts of the device
from a central control room, or even remotely over the in-
ternet.

Tango[3] is an Open Source solution for SCADA and
DCS. Open Source means you get all the source code under
an Open Source free licence (LGPL and GPL). Supervisory
Control and Data Acquisition (SCADA) systems are typi-
cally industrial type systems using standard hardware. Dis-
tributed Control Systems (DCS) are more flexible control
systems used in more complex environments. Sardana is a
good example of a Tango based Beamline SCADA.

Of course, many earlier control system software was
built using CORBA software middleware, or implemented
using the TCP custom protocol.

QUESTION
A few years later, the scientific experimental device will

inevitably bring about the continuous upgrading of the sys-
tem. How to adapt the control system and software to this
change is a great challenge. The control system software
constructed first needs to have a certain degree of scalabil-
ity. Secondly, as technology evolves, the control system
software needs to have a certain degree of compatibility;
the early and current systems need to communicate and
communicate, how to realize the communication between
the early and current systems is a technical problem, which
is a problem that this article needs to solve.

Another feature of the scientific experimental device is
that the operator's demand is unstable. Users will con-
stantly adjust their requirements based on their experience.
We have to modify the code, compile, and test run, and the
debugging time for software developers is very short, so
the skills of software technicians are very high. If you can
adapt to changes in requirements with zero programming,
this is a great thing.

Therefore, we propose a component-oriented distributed
data integration model, which is used to construct an im-
plementation method of data acquisition and control from
the device to the user interface.

In the following chapters, we first introduce the technol-
ogies that may be involved.

† email address: drops.ni@caep.cn.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV032

MOPV032C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

202 Software Technology Evolution

RELATED TECHNOLOGY

RPC and EDA: Thrift or Tango

Remote Procedure Call (RPC) is an interprocess com-
munication technique. It is used for client-server applica-
tions. RPC mechanisms are used when a computer program
causes a procedure or subroutine to execute in a different
address space, which is coded as a normal procedure call
without the programmer specifically coding the details for
the remote interaction. This procedure call also manages
low-level transport protocol, such as User Datagram Pro-
tocol, Transmission Control Protocol/Internet Protocol etc.
It is used for carrying the message data between programs.
The Full form of RPC is Remote Procedure Call.[4]

Event-driven architecture is a design model that con-
nects distributed software systems and allows for efficient
communication. EDA makes it possible to exchange infor-
mation in real time or near real time. It is common in de-
signing apps that rely on microservices. The concept of
event-driven architecture is mainly realized through the
publish/subscribe communication model. Publish/sub-
scribe is a flexible messaging pattern that allows disparate
system components to interact with one another asynchro-
nously. The key point here is that pub/sub enables comput-
ers to communicate and react to data updates as they occur.
This is in contrast to the traditional request/response mes-
saging pattern where data is updated at intervals, as a re-
sponse to a user-initiated request. There are always two
participants — a client and a server. The client makes a call
over the HTTP protocol and waits for a server to respond
with the requested content.

Thrift[5] is a lightweight, language-independent soft-
ware stack with an associated code generation mechanism
for RPC. Thrift provides clean abstractions for data
transport, data serialization, and application level pro-
cessing. Thrift was originally developed by Facebook and
now it is open sourced as an Apache project. Apache Thrift
is a set of code-generation tools that allows developers to
build RPC clients and servers by just defining the data
types and service interfaces in a simple definition file.
Given this file as an input, code is generated to build RPC
clients and servers that communicate seamlessly across
programming languages, as provided in Fig. 2.

Figure 2: The software architecture of Thrift

Tango Controls is a free open source device-oriented
controls toolkit for controlling any kind of hardware or

software and building SCADA (supervisory control and
data acquisition) systems. Tango Controls is operating sys-
tem independent and supports C++, Java and Python for all
the components. Tango Controls is a hardware independ-
ent toolkit. That means you can use your driver to connect
hardware with Tango Controls, as provided in Fig. 3.

Figure 3: Tango Controls can be used as a distributed sys-

tem

Script Engine: Elk[6]

Elk is a tiny embeddable JavaScript engine that imple-
ments a small but usable subset of ES6. It is designed for
microcontroller development. Instead of writing firmware
code in C/C++, Elk allows to develop in JavaScript. An-
other use case is providing customers with a secure, pro-
tected scripting environment for product customisation.

Realtime Database: LevelDB[7]

LevelDB is a fast key-value storage library written at
Google that provides an ordered mapping from string keys
to string values. LevelDB has three basic operations: Get,
Put, and Delete. Get retrieves a value given a key, Put
writes a value into a key, creating the key if it doesn't exist,
and Delete deletes the key and its value. There are open
(takes a filename argument) and close functions for creat-
ing/loading and unloading a database, and functions that
return iterators over all the keys and values. The keys and
values can be any byte array and not just strings. This is
useful if you have data that you want to store that you don't
want to encode into a string. LevelDB supports atomic op-
erations. You can run many operations at once in a single
uninterruptible call.

COMPONENT-ORIENTED DISTRIBUTED
DATA INTEGRATION MODEL

Component of Integrated Control And Data Ac-
quisition

As provided in Fig. 4, CICADA is the Component of In-
tegrated Control And Data Acquisition. CICADA imple-
ments a common component for data acquisition and inte-
grated control. Data is stored in a real-time database, con-
trol logic is stored in JavaScript scripts, and the script en-
gine is used to update data and dispatch commands regu-
larly. It can exist as a distributed service in the local area
network and be called by other component instances; it can
also be used as a service access module of the client soft-
ware to access other component instances; it can also be
used as a server and implemented as an IO device control
server; Replacing different RPC modules can be used as a
bridge between different middleware software.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV032

Software Technology Evolution

MOPV032

203

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

<<Component>>

CICADA
RPC(Server)

->Execute/Write/Read()

ScriptEngine

EVENT(pub)
RPC(Client)

->Execute/Write/Read()
EVENT(sub)

Write/Read/Subscribe Callback

RealtimeDatabase

Execute Write

Figure 4: The composition structure of Component of Integrated Control And Data Acquisition.

The Data Centre (Realtime Database) is the data sharing
centre of the components, which is responsible for storing
and interacting data. The data tag can be configured with
multiple attributes, what kind of behaviour is triggered af-
ter the data is executed or updated, whether the data is read-
able and writable, and so on.

The script engine is responsible for interpreting the ex-
ecutor to execute the script, interacting with the Data Cen-
tre, and realizing the logical operation of the data.

The local function set is responsible for basic functions
such as executing scripts, reading and writing data, sub-
scribing to data, and publishing data.

The RPC/EVENT module is responsible for information
exchange between components, including RPC and event-
driven methods, which can be used according to the appli-
cation scenario, or both. The RPC/EVENT module is com-
patible with TANGO and Thrift software middleware, and
supports expansion to CORBA or other software middle-
ware products.

The Entity of CICADA

CICADA has three forms of existence, one is to be inte-
grated by the client software in the form of a dynamic li-
brary, as the data acquisition and integrated control module
of the client software; the other is to exist as a system ser-
vice and be dispatched by the client software as a device
service, and at the same time As an example of the client
software scheduling other components; one way is to exist
as a device service, which can be accessed by system ser-
vices or client software, and part of the RPC module is re-
placed by the hardware driver SDK.

When it exists as a service, we design a container for CI-
CADA. It contains an administrative module that is respon-
sible for management functions such as creating, restarting
and deleting components, similar to the DServer module in
Tango software middleware.

As shown in the Fig. 5, we usually divide the control

software into three layers [8]: integrated control layer, sys-

tem service layer and equipment service layer. In these

three-layer control software, we can all use CICADA to re-

alize the interconnection and intercommunication part of

the software at their respective levels, which greatly sim-

plifies the many-to-many access control function between

nodes without worrying about the implementation details.

Ethernet Network

Field Bus

Sensor

integrated control layer

device service layer

Actor

system service layer

<<Component>>

CICADA

<<Component>>

CICADA

<<Component>>

CICADA

Figure 5: Use CICADA in the three-tier control software

architecture.

Connection between CICADA Entities

CICADA entities exchange information and control
scheduling through software middleware, as provided in
Fig. 6. Components run in their own containers, which can
be servers or clients. As an independent microservice or
client, the CICADA entity acts as a node in a distributed
network. The corresponding connection relationship is es-
tablished according to the business scenario. They are
loosely coupled, and the update influence domain of the
component is limited, which can be guaranteed The control
system software of the entire facility can evolve forward
relatively stably and smoothly.

<<Component>>

CICADA

PIRI

<<Component>>

CICADA

PIRI

<<Component>>

CICADA

PIRI

<<Component>>

CICADA

PIRI

Figure 6: Exchange information and control scheduling

between CICADA Entities.

Connection between early and current control
systems

For example, the new system is implemented using
TANGO software middleware, while the early system is
implemented using Thrift software middleware. How to re-
alize the information exchange between the early software
system and the new system is a problem.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV032

MOPV032C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

204 Software Technology Evolution

<<Component>>

CICADA

RPC/EVENT

ScriptEngine RealtimeDatabase

LocalFunction

RPC/EVENT

<<Component>>

Software by Tango

RPC/EVENT

<<Component>>

Software by Thrift

RPC/EVENT

RI2

PI8

RI3

PI8

Current Control System Early Control System

Figure 7: Use CICADA as a bridge between early and current control systems.

Now we use CICADA as a bridge between the two sys-
tems, basically zero programming can realize the infor-
mation exchange function between the two software sys-
tems, as provided in Fig. 7.

CONCLUSION
Through the design and realization of CICADA compo-

nents, we achieved two goals: the interconnection between
the early software system and the current software system,
and zero programming to adapt to the rapid changes in soft-
ware requirements. Of course, we implemented this com-
ponent to adapt to a workaround under specific needs.
Whether it is effective for a long time still needs time to
test, and this component is not considered in terms of QoS,
so it needs to be strengthened in the follow-up work. Hope
to communicate with colleagues, we will make CICADA
components better and more practical.

REFERENCES
[1] D. J. Yao et al., “Research on Software Architecture of Cen-

tralized Control System for High Power Laser Facilities,

Computer Engineering and Design”, vol. 28, pp. 1737-1740,

2007.

[2] EPICS Control System, http://www.aps.anl.gov/epics/

[3] TANGO Control System, http://www.tango-controls.org/

[4] RPC, https://www.guru99.com/remote-
 procedure-call-rpc.html
[5] Thrift, https://thrift-tutorial.readthedocs.io/

en/latest/in-tro.html

[6] ELK, https://github.com/cesanta/elk

[7] LevelDB, https://github.com/google/leveldb

[8] Z. G. Ni, L Li, J. Luo, J. Liu, X. W. Zhou, “The Design
of Intelligent Integrated Control Software Framework of

Facili-ties for Scientific Experiments”, in Proc. 17th Int.

Conf. on Accelerator and Large Experimental

Physics Control Systems (ICALEPCS'19), New York,

NY, USA, Oct. 2019, pp. 132-136,

doi:10.18429/JACoW-ICALEPCS2019-MOMPL007

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV032

Software Technology Evolution

MOPV032

205

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

