Author: Ferrand, G.
Paper Title Page
MOPV001 Status of the SARAF-Phase2 Control System 93
 
  • F. Gougnaud, P. Bargueden, G. Desmarchelier, A. Gaget, P. Guiho, A. Lotode, Y. Mariette, V. Nadot, N. Solenne
    CEA-DRF-IRFU, France
  • D. Darde, G. Ferrand, F. Gohier, T.J. Joannem, G. Monnereau, V. Silva
    CEA-IRFU, Gif-sur-Yvette, France
  • H. Isakov, A. Perry, E. Reinfeld, I. Shmuely, Y. Solomon, N. Tamim
    Soreq NRC, Yavne, Israel
  • T. Zchut
    CEA LIST, Palaiseau, France
 
  SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 Mev deuteron and proton beams and also closely to the control system. CEA is in charge of the Control System (including cabinets) design and implementation for the Injector (upgrade), MEBT and Super Conducting Linac made up of 4 cryomodules hosting HWR cavities and solenoid packages. This paper gives a detailed presentation of the control system architecture from hardware and EPICS software points of view. The hardware standardization relies on MTCA.4 that is used for LLRF, BPM, BLM and FC controls and on Siemens PLC 1500 series for vacuum, cryogenics and interlock. CEA IRFU EPICS Environment (IEE) platform is used for the whole accelerator. IEE is based on virtual machines and our MTCA.4 solutions and enables us to have homogenous EPICS modules. It also provides a development and production workflow. SNRC has integrated IEE into a new IT network based on advanced technology. The commissioning is planned to start late summer 2021.  
poster icon Poster MOPV001 [1.787 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV001  
About • Received ※ 09 October 2021       Revised ※ 20 October 2021       Accepted ※ 03 November 2021       Issue date ※ 11 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV031 Status of the uTCA Digital LLRF design for SARAF Phase II 720
 
  • J. Fernández, P. Gil, J.G. Ramirez
    7S, Peligros (Granada), Spain
  • G. Desmarchelier
    CEA-DRF-IRFU, France
  • G. Ferrand, F. Gohier, N. Pichoff
    CEA-IRFU, Gif-sur-Yvette, France
 
  One of the crucial control systems of any particle ac-celerator is the Low-Level Radio Frequency (LLRF). The purpose of a LLRF is to control the amplitude and phase of the field inside the accelerating cavity. The LLRF is a subsystem of the CEA (Commissariat à l’Energie Atomique) control domain for the SARAF-LINAC (Soreq Applied Research Accelerator Facility ’ Linear Accelera-tor) instrumentation and Seven Solutions has designed, developed, manufactured, and tested the system based on CEA technical specifications. The final version of this digital LLRF will be installed in the SARAF accelerator in Israel at the end of 2021. The architecture, design, and development as well as the performance of the LLRF system will be presented in this paper. The benefits of the proposed architecture and the first results will be shown.  
poster icon Poster WEPV031 [2.607 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV031  
About • Received ※ 08 October 2021       Revised ※ 19 October 2021       Accepted ※ 12 December 2021       Issue date ※ 25 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)