Author: Vestergard, H.
Paper Title Page
MOPMS001 The New Control System for the Vacuum of ISOLDE 312
 
  • S. Blanchard, F. Bellorini, F.B. Bernard, E. Blanco Vinuela, P. Gomes, H. Vestergard, D. Willeman
    CERN, Geneva, Switzerland
 
  The On-Line Isotope Mass Separator (ISOLDE) is a facility dedicated to the production of radioactive ion beams for nuclear and atomic physics. From ISOLDE vacuum sectors to the pressurized gases storage tanks there are up to five stages of pumping for a total of more than one hundred pumps including turbo-molecular, cryo, dry, membrane and oil pumps. The ISOLDE vacuum control system is critical; the volatile radioactive elements present in the exhaust gases and the High and Ultra High Vacuum pressure specifications require a complex control and interlocks system. This paper describes the reengineering of the control system developed using the CERN UNICOS-CPC framework. An additional challenge has been the usage of the UNICOS-CPC in a vacuum domain for the first time. The process automation provides multiple operating modes (Rough pumping, bake-out, high vacuum pumping, regeneration for cryo-pumped sectors, venting, etc). The control system is composed of local controllers driven by PLC (logic, interlocks) and a SCADA application (operation, alarms monitoring and diagnostics).  
poster icon Poster MOPMS001 [4.105 MB]  
 
MOPMS016 The Control System of CERN Accelerators Vacuum (Current Status and Recent Improvements) 354
 
  • P. Gomes, F. Antoniotti, S. Blanchard, M. Boccioli, G. Girardot, H. Vestergard
    CERN, Geneva, Switzerland
  • L. Kopylov, M.S. Mikheev
    IHEP Protvino, Protvino, Moscow Region, Russia
 
  The vacuum control system of most of the CERN accelerators is based on Siemens PLCs and on PVSS SCADA. The application software for both PLC and SCADA started to be developed specifically by the vacuum group; with time, it included a growing number of building blocks from the UNICOS framework. After the transition from the LHC commissioning phase to its regular operation, there has been a number of additions and improvements to the vacuum control system, driven by new technical requirements and by feedback from the accelerator operators and vacuum specialists. New functions have been implemented in PLC and SCADA: for the automatic restart of pumping groups, after power failure; for the control of the solenoids, added to reduce e-cloud effects; and for PLC power supply diagnosis. The automatic recognition and integration of mobile slave PLCs has been extended to the quick installation of pumping groups with the electronics kept in radiation-free zones. The ergonomics and navigation of the SCADA application have been enhanced; new tools have been developed for interlock analysis, and for device listing and selection; web pages have been created, summarizing the values and status of the system. The graphical interface for windows clients has been upgraded from ActiveX to QT, and the PVSS servers will soon be moved from Windows to Linux.  
poster icon Poster MOPMS016 [113.929 MB]