Author: Rubio, A.
Paper Title Page
MOPMU006 The Commissioning of the Control System of the Accelerators and Beamlines at the Alba Synchrotron 432
 
  • D.F.C. Fernández-Carreiras, F. Becheri, S. Blanch, A. Camps, T.M. Coutinho, G. Cuní, J.V. Gigante, J.J. Jamroz, J. Klora, J. Lidón-Simon, O. Matilla, J. Metge, A. Milán, J. Moldes, R. Montaño, M. Niegowski, C. Pascual-Izarra, S. Pusó, Z. Reszela, A. Rubio, S. Rubio-Manrique, A. Ruz
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  Alba is a third generation synchrotron located near Barcelona in Spain. The final commissioning of all accelerators and beamlines started the 8th of March 2011. The Alba control system is based on the middle layer and tools provided by TANGO. It extensively uses the Sardana Framework, including the Taurus graphical toolkit, based on Python and Qt. The control system of Alba is highly distributed. The design choices made five years ago, have been validated during the commissioning. Alba uses extensively Ethernet as a Fieldbus, and combines diskless machines running Tango on Linux and Windows, with specific hardware based in FPGA and fiber optics for fast real time transmissions and synchronizations. B&R PLCs, robust, reliable and cost-effective are widely used in the different components of the machine protection system. In order to match the requirements in terms of speed, these PLCs are sometimes combined with the MRF Timing for the fast interlocks. This paper describes the design, requirements, challenges and the lessons learnt in the installation and commissioning of the control system.  
poster icon Poster MOPMU006 [24.241 MB]  
 
WEPMU005 Personnel Protection, Equipment Protection and Fast Interlock Systems: Three Different Technologies to Provide Protection at Three Different Levels 1055
 
  • D.F.C. Fernández-Carreiras, D.B. Beltrán, J. Klora, O. Matilla, J. Moldes, R. Montaño, M. Niegowski, R. Ranz, A. Rubio, S. Rubio-Manrique
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The Personnel Safety System is based on PILZ PLCs, SIL3 compatible following the norm IEC 61508. It is independent from other subsystems and relies on a dedicated certification by PILZ first and then by TÜV. The Equipment Protection System uses B&R hardware and comprises more than 50 PLCs and more than 100 distributed I/0 modules installed inside the tunnel. The CPUs of the PLCs are interconnected by a deterministic network, supervising more than 7000 signals. Each Beamline has an independent system. The fast interlocks use the bidirectional fibers of the MRF timing system for distributing the interlocks in the microsecond range. Events are distributed by fiber optics for synchronizing more than 280 elements.  
poster icon Poster WEPMU005 [32.473 MB]  
 
FRBHMUST01 The Design of the Alba Control System: A Cost-Effective Distributed Hardware and Software Architecture. 1318
 
  • D.F.C. Fernández-Carreiras, D.B. Beltrán, T.M. Coutinho, G. Cuní, J. Klora, O. Matilla, R. Montaño, C. Pascual-Izarra, S. Pusó, R. Ranz, A. Rubio, S. Rubio-Manrique
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The control system of Alba is highly distributed from both hardware and software points of view. The hardware infrastructure for the control system includes in the order of 350 racks, 20000 cables and 6200 equipments. More than 150 diskless industrial computers, distributed in the service area and 30 multicore servers in the data center, manage several thousands of process variables. The software is, of course, as distributed as the hardware. It is also a success story of the Tango Collaboration where a complete software infrastructure is available "off the shelf". In addition Tango has been productively complemented with the powerful Sardana framework, a great effort in terms of development, which nowadays, several institutes benefit from. The whole installation has been coordinated from the beginning with a complete cabling and equipment database, where all the equipment, cables, connectors are described and inventoried. The so called "cabling database" is core of the installation. The equipments and cables are defined there. The basic configurations of the hardware like MAC and IP addresses, DNS names, etc. are also gathered in this database, allowing the network communication files and declaration of variables in the PLCs to be created automatically. This paper explains the design and the architecture of the control system, describes the tools and justifies the choices made. Furthermore, it presents and analyzes the figures regarding cost and performances.  
slides icon Slides FRBHMUST01 [4.616 MB]