Author: Nagai, K.
Paper Title Page
MOBAUST02 The ATLAS Detector Control System 5
  • S. Schlenker, S. Arfaoui, S. Franz, O. Gutzwiller, C.A. Tsarouchas
    CERN, Geneva, Switzerland
  • G. Aielli, F. Marchese
    Università di Roma II Tor Vergata, Roma, Italy
  • G. Arabidze
    MSU, East Lansing, Michigan, USA
  • E. Banaś, Z. Hajduk, J. Olszowska, E. Stanecka
    IFJ-PAN, Kraków, Poland
  • T. Barillari, J. Habring, J. Huber
    MPI, Muenchen, Germany
  • M. Bindi, A. Polini
    INFN-Bologna, Bologna, Italy
  • H. Boterenbrood, R.G.K. Hart
    NIKHEF, Amsterdam, The Netherlands
  • H. Braun, D. Hirschbuehl, S. Kersten, K. Lantzsch
    Bergische Universität Wuppertal, Wuppertal, Germany
  • R. Brenner
    Uppsala University, Uppsala, Sweden
  • D. Caforio, C. Sbarra
    Bologna University, Bologna, Italy
  • S. Chekulaev
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S. D'Auria
    University of Glasgow, Glasgow, United Kingdom
  • M. Deliyergiyev, I. Mandić
    JSI, Ljubljana, Slovenia
  • E. Ertel
    Johannes Gutenberg University Mainz, Institut für Physik, Mainz, Germany
  • V. Filimonov, V. Khomutnikov, S. Kovalenko
    PNPI, Gatchina, Leningrad District, Russia
  • V. Grassi
    SBU, Stony Brook, New York, USA
  • J. Hartert, S. Zimmermann
    Albert-Ludwig Universität Freiburg, Freiburg, Germany
  • D. Hoffmann
    CPPM, Marseille, France
  • G. Iakovidis, K. Karakostas, S. Leontsinis, E. Mountricha
    National Technical University of Athens, Athens, Greece
  • P. Lafarguette
    Université Blaise Pascal, Clermont-Ferrand, France
  • F. Marques Vinagre, G. Ribeiro, H.F. Santos
    LIP, Lisboa, Portugal
  • T. Martin, P.D. Thompson
    Birmingham University, Birmingham, United Kingdom
  • B. Mindur
    AGH University of Science and Technology, Krakow, Poland
  • J. Mitrevski
    SCIPP, Santa Cruz, California, USA
  • K. Nagai
    University of Tsukuba, Graduate School of Pure and Applied Sciences,, Tsukuba, Ibaraki, Japan
  • S. Nemecek
    Czech Republic Academy of Sciences, Institute of Physics, Prague, Czech Republic
  • D. Oliveira Damazio, A. Poblaguev
    BNL, Upton, Long Island, New York, USA
  • P.W. Phillips
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • A. Robichaud-Veronneau
    DPNC, Genève, Switzerland
  • A. Talyshev
    BINP, Novosibirsk, Russia
  • G.F. Tartarelli
    Universita' degli Studi di Milano & INFN, Milano, Italy
  • B.M. Wynne
    Edinburgh University, Edinburgh, United Kingdom
  The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of 140 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers based on the CERN JCOP framework allow for automatic control procedures, efficient error recognition and handling, manage the communication with external control systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS physics data acquisition system. A web-based monitoring system allows accessing the DCS operator interface views and browse the conditions data archive worldwide with high availability. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years and the LHC high luminosity upgrades are outlined.  
slides icon Slides MOBAUST02 [6.379 MB]  
WEPMN038 A Combined On-line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for the ATLAS Silicon Tracker 969
  • A. Bitadze, R.L. Bates
    University of Glasgow, Glasgow, United Kingdom
  • M. Battistin, S. Berry, P. Bonneau, J. Botelho-Direito, B. Di Girolamo, J. Godlewski, E. Perez-Rodriguez, L. Zwalinski
    CERN, Geneva, Switzerland
  • N. Bousson, G.D. Hallewell, M. Mathieu, A. Rozanov
    CNRS/CPT, Marseille, France
  • R. Boyd
    University of Oklahoma, Norman, Oklahoma, USA
  • M. Doubek, V. Vacek, M. Vitek
    Czech Technical University in Prague, Faculty of Mechanical Engineering, Prague, Czech Republic
  • K. Egorov
    Indiana University, Bloomington, Indiana, USA
  • S. Katunin
    PNPI, Gatchina, Leningrad District, Russia
  • S. McMahon
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • K. Nagai
    University of Tsukuba, Graduate School of Pure and Applied Sciences,, Tsukuba, Ibaraki, Japan
  An upgrade to the ATLAS silicon tracker cooling control system requires a change from C3F8 (molecular weight 188) coolant to a blend with 10-30% C2F6 (mw 138) to reduce the evaporation temperature and better protect the silicon from cumulative radiation damage at LHC. Central to this upgrade an acoustic instrument for measurement of C3F8/C2F6 mixture and flow has been developed. Sound velocity in a binary gas mixture at known temperature and pressure depends on the component concentrations. 50 kHz sound bursts are simultaneously sent via ultrasonic transceivers parallel and anti-parallel to the gas flow. A 20 MHz transit clock is started synchronous with burst transmission and stopped by over-threshold received sound pulses. Transit times in both directions, together with temperature and pressure, enter a FIFO memory 100 times/second. Gas mixture is continuously analyzed using PVSS-II, by comparison of average sound velocity in both directions with stored velocity-mixture look-up tables. Flow is calculated from the difference in sound velocity in the two directions. In future versions these calculations may be made in a micro-controller. The instrument has demonstrated a resolution of <0.3% for C3F8/C2F6 mixtures with ~20%C2F6, with simultaneous flow resolution of ~0.1% of F.S. Higher precision is possible: a sensitivity of ~0.005% to leaks of C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 156) has been seen. The instrument has many applications, including analysis of hydrocarbons, mixtures for semi-conductor manufacture and anesthesia.