Author: Melkumyan, D.
Paper Title Page
MOPMS033 Status, Recent Developments and Perspective of TINE-powered Video System, Release 3 405
  • S. Weisse, D. Melkumyan
    DESY Zeuthen, Zeuthen, Germany
  • P. Duval
    DESY, Hamburg, Germany
  Experience has shown that imaging software and hardware installations at accelerator facilities need to be changed, adapted and updated on a semi-permanent basis. On this premise, the component-based core architecture of Video System 3 was founded. In design and implementation, emphasis was, is, and will be put on flexibility, performance, low latency, modularity, interoperability, use of open source, ease of use as well as reuse, good documentation and multi-platform capability. In the last year, a milestone was reached as Video System 3 entered production-level at PITZ, Hasylab and PETRA III. Since then, development path is stronger influenced by production-level experience and customer feedback. In this contribution, we describe the current status, layout, recent developments and perspective of the Video System. Focus will be put on integration of recording and playback of video sequences to Archive/DAQ, a standalone installation of the Video System on a notebook as well as experiences running on Windows 7-64bit. In addition, new client-side multi-platform GUI/application developments using Java are about to hit the surface. Last but not least it must be mentioned that although the implementation of Release 3 is integrated into the TINE control system, it is modular enough so that integration into other control systems can be considered.  
slides icon Slides MOPMS033 [0.254 MB]  
poster icon Poster MOPMS033 [2.127 MB]  
MOPMU026 A Readout and Control System for a CTA Prototype Telescope 494
  • I. Oya, U. Schwanke
    Humboldt University Berlin, Institut für Physik, Berlin, Germany
  • B. Behera, D. Melkumyan, T. Schmidt, P. Wegner, S. Wiesand, M. Winde
    DESY Zeuthen, Zeuthen, Germany
  CTA (Cherenkov Telescope Array) is an initiative to build the next generation ground-based gamma-ray instrument. The CTA array will allow studies in the very high-energy domain in the range from a few tens of GeV to more than hundred TeV, extending the existing energy coverage and increasing by a factor 10 the sensitivity compared to current installations, while enhancing other aspects like angular and energy resolution. These goals require the use of at least three different sizes of telescopes. CTA will comprise two arrays (one in the Northern hemisphere and one in the Southern hemisphere) for full sky coverage and will be operated as an open observatory. A prototype for the Medium Size Telescope (MST) type is under development and will be deployed in Berlin by the end of 2011. The MST prototype will consist of the mechanical structure, drive system, active mirror control, four CCD cameras for prototype instrumentation and a weather station. The ALMA Common Software (ACS) distributed control framework has been chosen for the implementation of the control system of the prototype. In the present approach, the interface to some of the hardware devices is achieved by using the OPC Unified Architecture (OPC UA). A code-generation framework (ACSCG) has been designed for ACS modeling. In this contribution the progress in the design and implementation of the control system for the CTA MST prototype is described.  
poster icon Poster MOPMU026 [1.953 MB]