Author: Kankiya, P.
Paper Title Page
MOBAUST04 The RHIC and RHIC Pre-Injectors Controls Systems: Status and Plans 13
 
  • K.A. Brown, Z. Altinbas, J. Aronson, S. Binello, I.G. Campbell, M.R. Costanzo, T. D'Ottavio, W. Eisele, A. Fernando, B. Frak, W. Fu, C. Ho, L.T. Hoff, J.P. Jamilkowski, P. Kankiya, R.A. Katz, S.A. Kennell, J.S. Laster, R.C. Lee, G.J. Marr, A. Marusic, R.J. Michnoff, J. Morris, S. Nemesure, B. Oerter, R.H. Olsen, J. Piacentino, G. Robert-Demolaize, V. Schoefer, R.F. Schoenfeld, S. Tepikian, C. Theisen, C.M. Zimmer
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Brookhaven National Laboratory (BNL) is one of the premier high energy and nuclear physics laboratories in the world and has been a leader in accelerator based physics research for well over half a century. For the past ten years experiments at the Relativistic Heavy Ion Collider (RHIC) have recorded data from collisions of heavy ions and polarized protons, leading to major discoveries in nuclear physics and the spin dynamics of quarks and gluons. BNL is also the site of one of the oldest alternating gradient synchrotrons, the AGS, which first operated in 1960. The accelerator controls systems for these instruments span multiple generations of technologies. In this report we will describe the current status of the Collider-Accelerator Department controls systems, which are used to control seven different accelerator facilities (from the LINAC and Tandem van de Graafs to RHIC) and multiple science programs (high energy nuclear physics, high energy polarized proton physics, NASA programs, isotope production, and multiple accelerator research and development projects). We will describe the status of current projects, such as the just completed Electron Beam Ion Source (EBIS), our R&D programs in superconducting RF and an Energy Recovery LINAC (ERL), innovations in feedback systems and bunched beam stochastic cooling at RHIC, and plans for future controls system developments.
 
slides icon Slides MOBAUST04 [6.386 MB]  
 
MOPMU027 Controls System Developments for the ERL Facility 498
 
  • J.P. Jamilkowski, Z. Altinbas, D.M. Gassner, L.T. Hoff, P. Kankiya, D. Kayran, T.A. Miller, R.H. Olsen, B. Sheehy, W. Xu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U. S. Department of Energy.
The BNL Energy Recovery LINAC (ERL) is a high beam current, superconducting RF electron accelerator that is being commissioned to serve as a research and development prototype for a RHIC facility upgrade for electron-ion collision (eRHIC). Key components of the machine include a laser, photocathode, and 5-cell superconducting RF cavity operating at a frequency of 703 MHz. Starting with a foundation based on existing ADO software running on Linux servers and on the VME/VxWorks platforms developed for RHIC, we are developing a controls system that incorporates a wide range of hardware I/O interfaces that are needed for machine R&D. Details of the system layout, specifications, and user interfaces are provided.
 
poster icon Poster MOPMU027 [0.709 MB]