Author: Iakovidis, G.
Paper Title Page
MOBAUST02 The ATLAS Detector Control System 5
 
  • S. Schlenker, S. Arfaoui, S. Franz, O. Gutzwiller, C.A. Tsarouchas
    CERN, Geneva, Switzerland
  • G. Aielli, F. Marchese
    Università di Roma II Tor Vergata, Roma, Italy
  • G. Arabidze
    MSU, East Lansing, Michigan, USA
  • E. Banaś, Z. Hajduk, J. Olszowska, E. Stanecka
    IFJ-PAN, Kraków, Poland
  • T. Barillari, J. Habring, J. Huber
    MPI, Muenchen, Germany
  • M. Bindi, A. Polini
    INFN-Bologna, Bologna, Italy
  • H. Boterenbrood, R.G.K. Hart
    NIKHEF, Amsterdam, The Netherlands
  • H. Braun, D. Hirschbuehl, S. Kersten, K. Lantzsch
    Bergische Universität Wuppertal, Wuppertal, Germany
  • R. Brenner
    Uppsala University, Uppsala, Sweden
  • D. Caforio, C. Sbarra
    Bologna University, Bologna, Italy
  • S. Chekulaev
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • S. D'Auria
    University of Glasgow, Glasgow, United Kingdom
  • M. Deliyergiyev, I. Mandić
    JSI, Ljubljana, Slovenia
  • E. Ertel
    Johannes Gutenberg University Mainz, Institut für Physik, Mainz, Germany
  • V. Filimonov, V. Khomutnikov, S. Kovalenko
    PNPI, Gatchina, Leningrad District, Russia
  • V. Grassi
    SBU, Stony Brook, New York, USA
  • J. Hartert, S. Zimmermann
    Albert-Ludwig Universität Freiburg, Freiburg, Germany
  • D. Hoffmann
    CPPM, Marseille, France
  • G. Iakovidis, K. Karakostas, S. Leontsinis, E. Mountricha
    National Technical University of Athens, Athens, Greece
  • P. Lafarguette
    Université Blaise Pascal, Clermont-Ferrand, France
  • F. Marques Vinagre, G. Ribeiro, H.F. Santos
    LIP, Lisboa, Portugal
  • T. Martin, P.D. Thompson
    Birmingham University, Birmingham, United Kingdom
  • B. Mindur
    AGH University of Science and Technology, Krakow, Poland
  • J. Mitrevski
    SCIPP, Santa Cruz, California, USA
  • K. Nagai
    University of Tsukuba, Graduate School of Pure and Applied Sciences,, Tsukuba, Ibaraki, Japan
  • S. Nemecek
    Czech Republic Academy of Sciences, Institute of Physics, Prague, Czech Republic
  • D. Oliveira Damazio, A. Poblaguev
    BNL, Upton, Long Island, New York, USA
  • P.W. Phillips
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • A. Robichaud-Veronneau
    DPNC, Genève, Switzerland
  • A. Talyshev
    BINP, Novosibirsk, Russia
  • G.F. Tartarelli
    Universita' degli Studi di Milano & INFN, Milano, Italy
  • B.M. Wynne
    Edinburgh University, Edinburgh, United Kingdom
 
  The ATLAS ex­per­i­ment is one of the mul­ti-pur­pose ex­per­i­ments at the Large Hadron Col­lid­er (LHC), con­struct­ed to study el­e­men­tary par­ti­cle in­ter­ac­tions in col­li­sions of high-en­er­gy pro­ton beams. Twelve dif­fer­ent sub-de­tec­tors as well as the com­mon ex­per­i­men­tal in­fras­truc­ture are su­per­vised by the De­tec­tor Con­trol Sys­tem (DCS). The DCS en­ables equip­ment su­per­vi­sion of all ATLAS sub-de­tec­tors by using a sys­tem of 140 serv­er ma­chines run­ning the in­dus­tri­al SCADA prod­uct PVSS. This high­ly dis­tribut­ed sys­tem reads, pro­cess­es and archives of the order of 106 op­er­a­tional pa­ram­e­ters. High­er level con­trol sys­tem lay­ers based on the CERN JCOP frame­work allow for au­to­mat­ic con­trol pro­ce­dures, ef­fi­cient error recog­ni­tion and han­dling, man­age the com­mu­ni­ca­tion with ex­ter­nal con­trol sys­tems such as the LHC con­trols, and pro­vide a syn­chro­niza­tion mech­a­nism with the ATLAS physics data ac­qui­si­tion sys­tem. A web-based mon­i­tor­ing sys­tem al­lows ac­cess­ing the DCS op­er­a­tor in­ter­face views and browse the con­di­tions data archive world­wide with high avail­abil­i­ty. This con­tri­bu­tion first­ly de­scribes the sta­tus of the ATLAS DCS and the ex­pe­ri­ence gained dur­ing the LHC com­mis­sion­ing and the first physics data tak­ing op­er­a­tion pe­ri­od. Sec­ond­ly, the fu­ture evo­lu­tion and main­te­nance con­straints for the com­ing years and the LHC high lu­mi­nos­i­ty up­grades are out­lined.  
slides icon Slides MOBAUST02 [6.379 MB]  
 
MOPMN014 Detector Control System for the ATLAS Muon Spectrometer And Operational Experience After The First Year of LHC Data Taking 267
 
  • S. Zimmermann
    Albert-Ludwig Universität Freiburg, Freiburg, Germany
  • G. Aielli
    Università di Roma II Tor Vergata, Roma, Italy
  • M. Bindi, A. Polini
    INFN-Bologna, Bologna, Italy
  • S. Bressler, E. Kajomovitz, S. Tarem
    Technion, Haifa, Israel
  • R.G.K. Hart
    NIKHEF, Amsterdam, The Netherlands
  • G. Iakovidis, E. Ikarios, K. Karakostas, S. Leontsinis, E. Mountricha
    National Technical University of Athens, Athens, Greece
 
  Muon Re­con­struc­tion is a key in­gre­di­ent in any of the ex­per­i­ments at the Large Hadron Col­lid­er LHC. The muon spec­trom­e­ter of ATLAS com­pris­es Mon­i­tored Drift Tube (MDTs) and Cath­ode Strip Cham­bers (CSCs) for pre­ci­sion track­ing as well as Re­sis­tive Plate (RPC) and Thin Gap (TGC) Cham­bers as muon trig­ger and for sec­ond co­or­di­nate mea­sure­ment. To­geth­er with a strong mag­net­ic field pro­vid­ed by a super con­duct­ing toroid mag­net and an op­ti­cal align­ment sys­tem a high pre­ci­sion de­ter­mi­na­tion of muon mo­men­tum up to the high­est par­ti­cle en­er­gies ac­ces­si­ble by the LHC col­li­sions is pro­vid­ed. The De­tec­tor Con­trol Sys­tem (DCS) of each muon sub-de­tec­tor tech­nol­o­gy must ef­fi­cient­ly and safe­ly man­age sev­er­al thou­sands of LV and HV chan­nels, the front-end elec­tron­ics ini­tial­iza­tion as well as mon­i­tor­ing of beam, back­ground, mag­net­ic field and en­vi­ron­men­tal con­di­tions. This con­tri­bu­tion will de­scribe the cho­sen hard­ware ar­chi­tec­ture, which as much as pos­si­ble tries to use com­mon tech­nolo­gies, and the im­ple­ment­ed con­trols hi­er­ar­chy. In ad­di­tion the muon DCS human ma­chine in­ter­face (HMI) layer and op­er­a­tor tools will be cov­ered. Em­pha­sis will be given to re­view­ing the ex­pe­ri­ence from the first year of LHC and de­tec­tor op­er­a­tions, and to lessons learned for fu­ture large scale de­tec­tor con­trol sys­tems. We will also pre­sent the au­to­mat­ic pro­ce­dures put in place dur­ing last year and re­view the im­prove­ments gained by them for data tak­ing ef­fi­cien­cy. Fi­nal­ly, we will de­scribe the role DCS plays in as­sess­ing the qual­i­ty of data for physics anal­y­sis and in on­line op­ti­miza­tion of de­tec­tor con­di­tions.
On Behalf of the ATLAS Muon Collaboration
 
poster icon Poster MOPMN014 [0.249 MB]