Author: Eichhorn, R.
Paper Title Page
MOMMU012 A Digital Base-band RF Control System 82
 
  • M. Konrad, U. Bonnes, C. Burandt, R. Eichhorn, J. Enders, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Supported by DFG through CRC 634.
The analog RF control system of the S-DALINAC has been replaced by a new digital system. The new hardware consists of an RF module and an FPGA board that have been developed in-house. A self-developed CPU implemented in the FPGA executing the control algorithm allows to change the algorithm without time-consuming synthesis. Another micro-controller connects the FPGA board to a standard PC server via CAN bus. This connection is used to adjust control parameters as well as to send commands from the RF control system to the cavity tuner power supplies. The PC runs Linux and an EPICS IOC. The latter is connected to the CAN bus with a device support that uses the SocketCAN network stack included in recent Linux kernels making the IOC independent of the CAN controller hardware. A diagnostic server streams signals from the FPGAs to clients on the network. Clients used for diagnosis include a software oscilloscope as well as a software spectrum analyzer. The parameters of the controllers can be changed with Control System Studio. We will present the architecture of the RF control system as well as the functionality of its components from a control system developers point of view.
 
slides icon Slides MOMMU012 [0.087 MB]  
poster icon Poster MOMMU012 [33.544 MB]  
 
MOPMN002 Integration of the Moment-Based Beam-Dynamics Simulation Tool V-Code into the S-DALINAC Control System 235
 
  • S. Franke, W. Ackermann, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
  • R. Eichhorn, F. Hug, C. Klose, N. Pietralla, M. Platz
    TU Darmstadt, Darmstadt, Germany
 
  Funding: This work is supported by DFG through SFB 634.
Within accelerator control systems fast and accurate beam dynamics simulation programs can advantageously assist the operators to get a more detailed insight into the actual machine status. The V-Code simulation tool implemented at TEMF is a fast tracking code based on the Vlasov equation. Instead of directly solving this partial differential equation the considered particle distribution function is represented by a discrete set of characteristic moments. The accuracy of this approach is adjustable with the help of the considered order of moments and by representing the particle distribution through multiple sets of moments in a multi-ensemble environment. In this contribution an overview of the numerical model is presented together with implemented features for its dedicated integration into the control system of the Superconducting Linear Accelerator S-DALINAC.
 
poster icon Poster MOPMN002 [0.901 MB]