Author: De Long, J.H.
Paper Title Page
WEPMN024 NSLS-II Beam Position Monitor Embedded Processor and Control System 932
  • K. Ha, L.R. Dalesio, J.H. De Long, J. Mead, Y. Tian, K. Vetter
    BNL, Upton, Long Island, New York, USA
  Funding: Work supported by DOE contract No: DE-AC02-98CH10886
NSLS-II is a 3 Gev 3rd generation light source that is currently under construction. A sub-micron Digital Beam Position Monitor (DBPM) system which is hardware electronics and embedded software processor and EPICS IOC has been successfully developed and tested in the ALS storage ring and BNL Lab.
WEPMS015 NSLS-II Booster Timing System 1003
  • P.B. Cheblakov, S.E. Karnaev
    BINP SB RAS, Novosibirsk, Russia
  • J.H. De Long
    BNL, Upton, Long Island, New York, USA
  The NSLS-II light source includes the main storage ring with beam lines and injection part consisting of 200 MeV linac, 3 GeV booster synchrotron and two transport lines. The booster timing system is a part of NSLS-II timing system which is based on Event Generator (EVG) and Event Receivers (EVRs) fromμResearch Finland. The booster timing is based on the external events coming from NSLS-II EVG: "Pre-Injection", "Injection", "Pre-Extraction", "Extraction". These events are referenced to the specified bunch of the Storage Ring and correspond to the first bunch of the booster. EVRs provide two scales for triggering both of the injection and the extraction pulse devices. The first scale provides triggering of the pulsed septums and the bump magnets in the range of milliseconds and uses TTL outputs of EVR, the second scale provides triggering of the kickers in the range of microseconds and uses CML outputs. EVRs also provide the timing of a booster cycle operation and events for cycle-to-cycle updates of pulsed and ramping parameters, and the booster beam instrumentation synchronization. This paper describes the final design of the booster timing system. The timing system functional and block diagrams are presented.  
poster icon Poster WEPMS015 [0.799 MB]