S15CSE —  CASE and Software Engineering  
Paper Title Page
S15CSE01 CASE in CERN’s Accelerator Sector 528
 
  • A. Daneels, A. Albrecht, A. Cabas-Alonso, F. Chevrier, Ch. Delamare, G. Ferran, S. Foffano, P. Heymans, D. Manglunki, Y. Marti, J.P. Matheys, D.P. Missiaen, G. Moorhead, O. Novakov, T. Pettersson, J. Poole, M. Pozzato, J.-P. Quesnel, S. Santiago, J. Schinzel, N. Segura-Chinchilla, C.H. Sicard
    CERN, Geneva, Switzerland
 
  As in the software industry where computer aided software engineering (CASE) methodologies and tools are commonly used, CERN endeavours to introduce this technology to improve the efficiency of designing, producing and maintaining software. A large project is currently under development in the administrative area whereas a dedicated group has been set up to evaluate state of the art techniques for software development relating to physics experiments. A similar activity, though on a smaller scale, has been initiated in the accelerator sector also in view of the large amount of software that will be required by the LEP200 and the LHC projects. This paper briefly describes this technology and gives an account of current experience with the use of CASE methods and tools for technical projects in the accelerator sector at CERN.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S15CSE01  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
S15CSE02 Automation from Pictures: Producting Real Time Code from a State Transition Diagram 535
 
  • A.J. Kozubal
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported and funded under the Department of Defense, US Army Strategic Defense Command, under the auspices of the Department of Energy.
The state transition diagram (STD) model has been helpful in the design of real time software, especially with the emergence of graphical computer aided software engineering (CASE) tools. Nevertheless, the translation of the STD to real time code has in the past been primarily a manual task. At Los Alamos we have automated this process. The designer constructs the STD using a CASE tool (Cadre Teamwork) using a special notation for events and actions. A translator converts the STD into an intermediate state notation language (SNL), and this SNL is compiled directly into C code (a state program). Execution of the state program is driven by external events, allowing multiple state programs to effectively share the resources of the host processor. Since the design and the code are tightly integrated through the CASE tool, the design and code never diverge, and we avoid design obsolescence. Furthermore, the CASE tool automates the production of formal technical documents from the graphic description encapsulated by the CASE tool.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS1991-S15CSE02  
About • Received ※ 11 November 1991 — Accepted ※ 20 November 1991 — Issued ※ 04 December 1992  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)