
CASE in CERN's Accelerator Sector 

A. Albrecht (SL), A. Cabas-Alonso (AT), F. Chevrier (ECP), A. Daneels (AT), Ch. Delamare (CN), 
G. Ferran (CN), S. Foffano (MT), P. Heymans (AT). J.P. Matheys (ECP), D. Manglunki (PS), 

Y. Marti (SL), D. Missiaen (AT), G. Moorhead (CN), 0. Novakov (AT), T. Pettersson (PS), 
J. Poole (SL), M. Pozzato (SL), J.P. Quesnel (AT), S. Santiago (CN), J. Schinzel (AT), 

N. Segura-Chinchilla (AT), C-H. Sicard (PS) 
Presented by A. Dan eels (AT) 

CERN, European Organization for Nuclear Research, 1211 Geneva 23, Switzerland 

Abstract 

As in the software industry where computer aided software 
engineering (CASE) methodologies and tools are commonly 
used, CERN endeavours to introduce this technology to 
improve the efficiency of designing, producing and 
maintaining software. A large project is currently under 
development in the administrative area whereas a dedicated 
group has been set up to evaluate state of the art techniques for 
software development relating to physics experiments. A 
similar activity, though on a smaller scale, has been initiated 
in the accelerator sector also in view of the large amount of 
software that will be required by the LEP200 and the LHC 
projects. This paper briefly describes this technology and gives 
an account of current experience with the use of CASE 
methods and tools for technical projects in the accelerator 
sector at CERN. 

1. lNIRODUCTION 

Software engineering is the application of techniques which 
lead to the implementation of better quality software. It 
implies a planned process of producing well-structured, 
reliable, good quality, maintainable software systems which 
corresponds to the users' needs, within reasonable time frames 
[l]. 

This definition suggests that software engineering includes 
a good deal more than just producing computer programs and 
that good software development includes documentation, 
databases, operational procedures, etc. Furthermore, it focusses 
the planned aspect of the process: as any other engineering 
discipline, software production should be properly managed 
with scope definition, specification analysis, cost estimation, 
production plans, role distribution, etc. 

According to industry statistics, 75% of custom software 
development projects are rejected because they came either too 
late to be useful or did not correspond to the users' needs. 
However the complexity of application software grows 
continuously and today's average business package takes 
32,000 man-days, i.e. 160 man-years to develop [2]. This is 
not dissimilar to the effort spent at CERN on application 
software for accelerators. Indeed, in the eighties at least 
500 man-years were invested on controls and database 
applications for the PS accelerator complex, SPS and LEP, 

not including numerous developments that have not been 
accounted for. The annual maintenance effort is estimated to be 
around 15% of the development effort and exceeds the 
production capacity of the groups in charge. Here, maintenance 
is defined as software repair and update resulting from a 
changed functional specification of the software product. For 
each new development the volume of the software increases 
because more sophistication is required. By the time the LHC 
is approved, the demand for application software may well be 
two to three times higher beeause of increased functionality, 
increased information volume, more severe execution time 
constraints due to the superconducting nature of the machine, 
and higher reliability [3]. Even if the groups in charge manage 
to develop such large packages with the help of professional, 
voluntary and temporary staff, they will only be able to 
maintain it if software of sufficiently good quality is produced 
so as to dramatically reduce its maintenance cost. 

2. WHAT IS CASE ? 

CASE stands for Computer Assisted Software Engineering. 
For each new software project the engineer is recurrently 

performing a number of similar activities: collecting 
information from his client, organizing that information, cross 
checking with the client, etc. The process is systematic, 
iterative and proceeds in increasing degree of detail. A number 
of methods and procedures could be derived which, because of 
their recurrence, would be more efficiently executed if assisted 
by computer programs. Software tools were thus developed to 
assist the software engineer in collecting, organizing, storing, 
retrieving and cross checking that information throughout the 
development process of his project. The information is 
introduced through graphical and alphanumerical user interfaces 
and recorded in a repository, possibly a database management 
system, so that it is available throughout the production life 
cycle for complementing, checking and various administrative 
operations. 

CASE is introduced in order to encourage better quality 
designs, to increase productivity and to render software projects 
more manageable. Better quality software leads to reduced 
maintenance: industrial companies e.g. BBC, now ABB, claim 
to be able to reduce the maintenance to 2% of the development 
cost by using such tools [4]. 

528 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE01

S15CSE01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

528 CASE and Software Engineering



3. PRODUCTS ON THE MARKET 

There exist a large variety of CASE products on today's 
market: Computerworld [5] published a list of not less than 33 
such products that were selected on the basis of the tools they 
provide for analysis, design, code generation, debugging, code I 
configuration management, testing and integration, code 
analysis, maintenance, documentation, reverse engineering, 
project management, etc. Unfortunately, no tools exist yet that 
provide all these facilities in a single environment, and as they 
are developed different vendors, they are often not 
compatible: e.g. the output of a first vendor's analysis and 
design tool may not be usable by another vendor's code 
generator. Therefore some of the larger vendors endeavour to 
design frameworks through which tools from 

vendors can communicate. Such frameworks are 
Support Environments, IPSE. 

even IPSE are only effective the IPSE 
producer has established contracts with third party CASE 

To date the _,,," ... , __ 
subdivided in two 

software market seems to be 
domains: database and real time 

database focus the 
infonnation so that it can be retrieved and 

of associations or combinations as are 
"'""m'""• the real time in ..,,,,..,,,.,.,.,,. 
ap1:mc;auDns, concentrate on the functional and 

the process: what functions have to be 

!-'"'"''""""' - and when - to respond to the behaviour. 
This difference is reflected in the facilities that are by 
current CASE tools: those for database provide 
extensive facilities to model the data, whereas the tools for real 
time are more concerned with the 
functional and temporal behaviour of the process. One would 
expect tools for both database and real time applications in 
future to converge towards a single environment. 

4. 

CASE methods cover two aspects: a technical one that is 
concerned with the design and of the 
application, and a one that various 
control and assessment techniques with rules for a 
proper of the project team where every member 
has a wen defined role, in addition to for the 
organization of feedback. sessions with the users, 
quality assurance etc. 

As an initial most CASE methods start with defming 
the objectives and the boundaries of the 
enter into a where a model is nrr~'ll1,f'Pn 
needs to be developed and describing its relation to the 
environment. This model is then worked out in more detail 
during the analysis. Until this stage there is no consideration 
of how the requirements will be fulfilled, this is the purpose of 
the design. Next comes a build phase followed by 
implementation and commissioning. It should be noted that 

these methods bear strong resemblance with those developed in 
other engineering disciplines. 

5. CASE TOOLS 

CASE tools help the developer in reaching a full 
understanding of his project. They guide him through the 
various phases of the development process so as to produce a 
series of models to entirely depict his program: they are the 
"blue prints" of the program he will implement. 

Software involves in general three basic components: data, 
processes that operate on data, and the time or events at which 
the processes are executed. CASE tools allow to model 
respectively the structure and the internal relations of the data, 
the functions and the events; they further depict how data relate 
to functions, functions to events, etc. 

The models are represented by diagrams constructed by 
means of a number of accepted notations: 
e.g. Yourdon I DeMarco for control flow and state trai1s111on 
Jackson for data structure, Chen, ERD 
diagram) or NlAM Infonnation for 
entity Myers and Constantine for 
structure charts. CASE thus appear to the reader as 
roadmaps which he can to understand the 
structure of the program and the tur1Ctllona111ty 
These urn:grnmus 

..,,,.,.1..,,,, attributes, processes, events, 
spccu1ca11on Textual are also 

editors. The more advanced tools 
extensive checking such as referencibility of 

entities, and consistency of the 
identifying e.g. unlabeled or unbalanced entities and 
attributes , etc. 

Most CASE tools support multi-user and run 
in a distributed environment Their user interfaces are based on 
graphical and textual editors with Macintosh or MOTIF 

which the programmer enter its 
spc:cifica1tior1s that are in a central The 
repository the various tools into a 
environment (hence i.e. integrated CASE); data are 
available at each of the project life cycle and can be 
checked against the for completeness and 
consistency. Project administration tools are also provided to 
define access to the for each member of the 
project team depending on his privileges, to control the 
versions of diagrams, etc .. 

TOOLS USED IN THE 
SECTOR 

In order to evaluate the applicability of CASE in the 
accelerator sector at a number of pilot projects have 
been selected in various fields relating to accelerators: controls, 
data acquisition, cryogenics, modelling, radiation monitoring 
and survey, 

529 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE01

CASE and Software Engineering

S15CSE01

529

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



The pilot projects for database applications concern new 
designs, retrofitting existing systems or modelling for 
documentation purposes. ORACLE*CASE was selected 
because it provides a full information system engineering 
environment based on the ORACLE relational database that is 
standard at CERN. However, in order to compare the 
ORACLE methodology to model entities with NIAM, a 
"shadow" exercise has been initiated using RIDL, Relational 
!Dea Laboratory, of lntellibase NV (Antwerp, Belgium), that 
is based on the latter methodology. 

The evaluation of CASE for real time applications has 
focused on StP, Software through Pictures produced by 
Interactive Development Environments, IDE (San Francisco, 
USA) and Real Time Engineering Environment, RTEE, of 
Westmount Technologies (Delft, the Netherlands). These 
CASE tools complement Teamwork of CADRE Technologies 
that is in use in SL division 1. 

Brief Description of Pilot Projects 

• Data base Applications 
The database for cryogenics should provide a full inventory 

of the equipment and information on the state. It should also 
provide information concerning control signals and algorilhms 
and incorporate archive measurement and test data of the 
various instruments for maintenance purposes. 

The Survey group is responsible for the proper alignment 
of approximately 10,000 accelerator and transfer line elements 
over approximately 60 km. Most of that information is stored 
in a central ORACLE database and should be extended to 
include data about the stability of the measurement devices. 

The SL database aims at providing a central description of 
the SPS and LEP accelerators, reference information on the 
state of the machine and at maintaining historical reference data 
for a variety of applications in different areas: controls, 
vacuum, survey, beam instrumentation, magnets, power 
converters, radio frequency, mechanical design, and accelerator 
physics. 

• Real time applications. 
The LEAR control system is currently running in a 

VAX/VMS environment with UIS as ·console interface 
software. The front end hardware is based on PDP with Pascal 
software. By the accelerator start-up in 1992, the front-end part 
of this control system should be adapted to an X-system 
environment and its database migrated into an ORACLE one. 
It was intended first to model the control system by the use of 

1 .ii.2.1§.: Teamwork, that was recommended in 1989 by CERN's 
Teclmical Board for Process Controls and Accelerator Electronics 
(TEBOCO), became unusable for PS division when it was decided 
to standardize all CERN controls on UNIX or Ultrix. PS division 
was equipped with VAX stations and their VMS 0/S was replaced 
by Ultrix: although operational on VAX-VMS or DEC-Ultrix 
platforms, Teamwork: appeared not to run properly on PS' hybrid 
VAX-Ultrix configurations. 

ORACLE*CASE for documentation purposes, and next, to 
design an enhanced version. 

The General Supervisory System monitors the 
environmental conditions in the four experimental sites of 
LEP through more than 1,000 detectors. The system is based 
on an expert system with its knowledge base and security rules 
stored in an ORACLE database. It grew as experience 
accumulated over the years and has now reached a point were a 
major overhaul is needed to rationalise and enhance its 
functionality. The need to port the system to a UNIX 
environment provides the opportunity to undertake its retrofit. 

For StP two parallel evaluations were carried out. The first 
one concerned an asynchronous data-collector service that will 
be incorporated within the control system of the PS accelerator 
complex. That system has been analysed with the aid of data 
structure, data flow and state transitions editors. The second 
evaluation concerned the use of structure chart editing facilities 
for the detailed design of an error logging program. 

In contrast to this, the evaluation of the RTEE for real 
time application was not based on a real life project. Instead, 
the idea was to analyse the facilities the tools provide, in some 
cases by modelling parts of existing real time programs, and 
by evaluating the method and notation on which they are 
based. 

Objectives 

The prime objectives of the pilot projects are to gain 
experience with CASE methodology and tools and to evaluate 
their applicability to technical projects. All projects, except 
the one using RTEE, aim at producing real applications. This 
was in particular a pre-requisite for being entitled to an 
ORACLE*CASE licence. 

From a management's point of view, CASE is evaluated as 
a way to produce better quality software and to enhance 
communication with the user, cooperation across projects and 
progress visibility. It is also aimed at economy of scale by 
sharing the resources invested in the evaluation exercises. 

Constraints 

The mixed nature of the projects reflects the constraints. 
The pilot projects have limited financial and human 

resources: even if the overall team involves around 25 persons, 
depending on their role some are only spending a fraction of 
their time in the project. In addition the teams belong to 
different Divisions: Accelerator Technology, Computers and 
Networks, Electronics and Computing for Physics, Mechanical 
Technology, Proton Synchrotron, SPS-LEP. They are thus 
geographically distributed and their members are also involved 
in other activities whose priorities depend on the local 
divisional objectives. The teams cover a wide range of 
disciplines, each having it own habits and jargon. However, 
this multidisciplinary, multidivisional and part time nature are 
typical for the way projects are often carried out at CERN. 

530 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE01

S15CSE01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

530 CASE and Software Engineering



In addition the projects are different in size: though most 
are small and well encapsulated, the database project for 
cryogenics appears as a large one. It was thus difficult, not to 
say impossible, to keep the pilot projects synchronised so as 
to reach a more homogeneous level of expertise, possibly 
sharing some common designs, agreeing on a common 
glossary, etc. 

The project involves a mix of platforms: VAX stations 
running VMS, DEC and SUN-SLC & IPC running Unix. The 
workstations involved in the evaluation of ORACLE*CASE 
host the tools and are linked by ethemet to a central VAX 
6420 with VMS 5.4 that houses the central database and the 
dictionary. The workstations communicate with the central 
engineering database through SQL*NET (Fig.I.). 

SUPPORT 
811r1 IPC Ucib: 
MMbl!AM 
8llO Mb Diak 

CRYO 
Sun !PC Ucib: 
:WMb BAM 
8ll0Mb ow. 

N 
B 

SLCO 1------T 

Doc.talion 3100 
Ultrix 4.0 

VXLDB2 
Central Computer 

Vax 6420 I VMS 5.4 

Figure 1 

GSS 
Dcc.tat!Oll 3100 
VMS 5.4 

SURVEY 
Dcc.iatlon 3100 
VM.9 ~.• 

On ORACLE Corporation's request a tighter management 
scheme was adopted for the database projects than for the real 
time ones. 

Evolution of the projects 

It was felt that learning the method and the tools by reading 
manuals and playing with the tools alone would be too time 
consuming. Therefore systematic training on the method and 
the tools was introduced for the database pilot project teams 
and also for those involved in real time CASE evaluation who 
wished so. Professional consultancy was called upon to define 
the scope of the projects, for fonnal reviews, feedback and 
quality assurance in order to rapidly reach a reasonable degree 
of expertise within the CERN software engineering team. 

In general the methods were followed but needed to be 
adapted to the way of working, proper to scientific 
organizations. This is particularly true for ORACLE*CASE 
Method whose rigor was difficult to accept since it broke with 
the usual individual style of working. The methods for real 
time applications adapt easily to a more familiar bottom up 
design without excluding the rigid top down approach. 

The Survey and SL database projects are currently in the 
build stage and are generating tables and forms. Those involved 
in retrofitting the database for survey claim that by using 
CASE they were able to optimize their design so as to 
improve the performances of data retrieval by a factor of 5 
when compared to the original design. 

The cryogenics database however grew to become a much 
larger project than anticipated. This is in part due to the fact 
that an overall picture was originally not available and only 
became apparent as one proceeded through the method. Much 
time was spend on understanding the cryogenics problems in 
addition to learning the method and the tools. However, at this 
time a model has been designed that is reasonably stable and 
has obtained agreement with the users. 

LEAR failed to model its control system by using 
ORACLE*CASE. Despite hopes to model the system for 
documentation purposes, it turned out impossible to describe 
the time dependencies and the process sequencing that are 
fundamental aspects of real time systems. 

Eventually modelling the General Supervisory System 
could not be pursued because of lack of manpower. However, 
it came to a point where similar problems as for LEAR 
became apparent because of its strong real time nature. 

7. COMP ARING METI-IODS AND TOOLS 

ORACLE*CASE 

ORACLE*CASE Method follows a top down 
approach whereby a number of tasks have to be perfonned in a 
specific sequence. These tasks are grouped in the various 
project phases which must yield well defined deliverables 
before one can proceed to the next phase. The method also 
includes many cross checking techniques to ensure the 
accuracy, consistency and completeness of the design. It also 
provides techniques and procedures for team and project 
management emphasising the user involvement throughout the 
life cycle and control techniques. 

The following phases are identified: 
Scoping to define the limits of the project, its objectives 

and constraints. ORACLE puts a lot of emphasis on this 
phase as a means to keep the project on its tracks. 

Strategy: in this phase a model is produced of what 
needs to be developed. The functionality is represented by a 
hierarchical breakdown of the functions to be performed and a 
structural model is built with the entities. This phase also 
includes statements about quality standards to be achieved. The 
requirements are next translated into written specifications, 
drawings, data sheets, etc. 

531 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE01

CASE and Software Engineering

S15CSE01

531

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Analysis: the previous model is now worked out by 
adding attributes to the entities and by describing them in 
detail. The data flow diagram describes movement of data 
between the functions. Matrices allow the cross checking of 
completeness of the relations between functions and entities, 
entities and attributes. 

Design: this phase concentrates on how the detailed 
requirements, as defined in the strategy, will be fulfilled. An 
infonnation system architecture is produced identifying the 
various applications covered by the functions that will access 
the database together with a detailed program specification. 

Build stage: the system is now built and reviewed with 
the user. 

Transition phase: the implementer provides the customer 
with the necessary support to ensure a smooth transition from 
the old system to the new one. 

Production (Operation): ensures the running of the 
system whilst its performances are being monitored. 

It should also be stressed that ORACLE*CASE puts a lot 
of emphasis on the management aspect of the project and on 
the relation between the information system engineer and the 
customers. 

The tools provided by ORACLE are CASE*Dictionary, 
an internal multi-user database that acts as the central 
repository for all information relating to a project through all 
stages of its life cycle. This dictionary is filled through 
U.04.<&U• .. ~ (function hierarchy, entity relationship, data flow, ... ), 
matrices and interactive forms provided by CASE*Designer. 
Furthermore, CASE*Generator generates tables, menus, 
interactive forms using the 4 I 5 GL ORACLE tools, and 
reports. The central part in ORACLE*CASE is the entity 
relationship diagram, that is based on an extension of the Chen 
method. It provides a large number of facilities and coded 
symbols to describe the entities, their type and attributes as 
well as their relations. 

CASE for Real Time Applications 

The rigid top down approach that is followed by some 
CASE methods and tools has been the object of endless debate 
and has been abandonned by some of its major initiators in 
favour of a more pragmatic middle out approach (6) or an 
object oriented one. The tools that were evaluated within the 
scope of this exercise, StP and RTEE, follow this middle out 
approach and allow the designer to progress both towards 
higher levels of abstraction and lower levels of details in the 
course of his analysis and design. Except for this particular 
feature, the CASE method for real time applications follows 
essentially the same sequence of phases (see previous 
paragraph) by which a series of models are produced that are 
gradually refined and complemented so as to ultimately yield 
template code. However, the user involvement and team 
organization during the project life cycle is not defined to the 
same extent as by the ORACLE*CASE method. 

The major steps through the method are: 
Survey, evaluating the requests and the feasibility within 

budget and time constraints. 
Analysis, defining the environmental model of the 

system (i.e. how does the system relate to its environment) 
and the behavioural model showing the processes inside 
the system. 

Architecture, where processes, tasks and eventually 
modules are modelled. This is a not so common feature that 
is particularly useful in case of distributed multitasking 
systems. 

The strategy phase of ORACLE*CASE appears to 
include the survey phase with some overlap in the analysis 
when defining the environmental model. 

Contrary to ORACLE*CASE whose diagrams are limited 
to describing the functional hierarchy, relationships between 
entities and dataflows, the tools for real time application 
development provide diagrams to model several control aspects 
of the system. 

The control now diagram provides hierarchical models 
of the system's functionality showing data and control flow 
between processes, the processing of data and their control 
actions. It is based on a number of rules and symbols to 
represent data processes and control processes, types of flows 
(data flow, update flows, continuous data flow, control flow 
and continuous control flows), stores (data and control stores 
such as information), and external processes with which 
the system communicates. The familiar data now diagram 
one finds in ORACLE*CASE, appears as a specific view in 
the control flow diagram. It is complemented by a list of 
events (temporal, control or flow oriented) identifying the 
stimuli that occur in the external world and to which the 
system has to respond, and diagrams to illustrate how these 
events relate to the system. 

The data structure diagram gives an abstract and static 
representation of the data: it shows how the data are structured 
hierarchically, not their relation. It allows specification of 
simple sequences, iterations and selections. 

The relationship diagram represents the static 
relations between entities using the Chen modelling technique. 

The state transition diagram describes the states of a 
system and the sequence of activities between the states (in our 
case, following the Yourdon method). 

The system architecture diagram is an extension of 
the control flow diagram. It allows one to graphically assign 
and partition tasks to processors and incorporates symbols for 
processors, tasks, interrupt service routines, message queues, 
message boxes, event queues and event flags. 

The structure chart depicts the functional breakdown of 
the system. A module is defined as a collection of program 
statements. 

Ultimately the code is generated in three steps: generation 
of a program design language, PDL, from the structure 
chart; generation of program code from PDL; generation of 
data type declarations from data type diagrams. 

532 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE01

S15CSE01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

532 CASE and Software Engineering



8. EVALUATION CRITERIA 

CASE products are evaluated relative to their architecture, 
the environment in which they run, the applications that are 
provided with the product, the tools themselves and, last but 
not least, a number of economical considerations relating to 
the vendor. 

The architecture is expected to be "open" allowing the user 
to customize e.g. menus, commands, etc., to set defaults and 
to extend the tool by invoking other tools such as e.g. testers 
and simulators. 

The environment in which the tools run should be based on 
standard operating systems, windowing system; they should 
also support heterogenc.ous networks. 

The product should allow tracing the requirements 
throughout the various phases and provide facilities to produce 
standard documents that can be customized, etc. 

The tools themselves are evaluated on the ergonomics of 
their editors and the techniques they support 

Selecting such a tool implies a strategic choice and one has 
to take into account vendors' "health" on the CASE market, 
the support he is able to provide, and the evolution of his 
product with to those of competitors. 

9. PRELIMINARY CONCLUSIONS 

Although it is premature at this stage of the project to draw 
definite conclusions, sufficient experience has been 
accumulated to be convinced of the usefulness of CASE 
methods. They are very rigorous and convey confidence in the 
quality of the product. The clients admitted, after initial 
skepticism, that the method provides a sound basis for 
discussion. Even if during the analysis some projects grew 
larger than anticipated and extended well beyond the part to be 
implemented, it shows that an overall picture has been 
obtained thanks to the method and that provision for coherent 
future extension will be built into the model. In addition the 
methods give control on the project life cycle. 

a number of weaknesses and inconveniences that 
the vendors endeavour to correct, all products proved to be state 
of the art They provide an excellent basis for communication: 
designers and users discuss over a full set of specifications 
both graphical and textual, with agreed definitions and 
terminology avoiding misunderstanding. CASE appears thus 
as a must for large projects, and prepares the ground for 
subcontracting. Though at present CASE may seem an 
overkill for smaller projects, it may be that as soon as the 
technology is well mastered it allows to produce !his type of 
project in "no time". 

No major problems were encountered when working in a 
mixed environment. Most tools run on workstations and 
access the central repository installed on a server through the 
network. 

None of the tools for real time applications that were 
evaluated run with ORACLE as internal repository. This is a 

limitation in CERN's context where ORACLE is a standard, 
but no tool could as yet be found on the market that satisfies 
this requirement 

However, the use of CASE implies a real change of habit: 
it requires an analytic approach and a disciplined style of 
working that contrasts with the previous free style. Also it 
needs a relatively long learning curve: the longest probably for 
ORACLE*CASE that often requires a good insight of the 
method and its relation with the tools for efficient 
understanding; therefore training by the vendor is of great help. 
Nevertheless, even after training, one should be prepared to 
invest significant time in order to become fluent. 

It was difficult to come to an agreement on the method 
amongst the participants. The old debate between top down and 
bottom up design became vivid again. The top down approach 
!hat is followed by ORACLE*CASE was difficult to grasp in 
particular by those who have a real time controls background. 
They felt more at home with the method and tools for real 
time application which tend to follow a more pragmatic middle 
out approach. 

The entity relationship technique on which 
ORACLE*CASE is based led to some concern. NIAM on the 
other hand defines binary relationships between objects, and is 
felt by some as a more natural method for data modelling. It 
also provides diagrams that are more informative as they 
include explicit notations for e.g. role, subtypes and procedural 
constraints. A consequence of course is that NIAM diagrams 
are less surveyable than the ORACLE entity relationship ones. 
It is however possible to generate NIAM diagrams from 
ORACLE ones; the inverse operation is not possible because 
of loss of information. 

The tools for real time application development highlighted 
the well known problem of transfer of information between the 
analysis and design phase. While it would seem that object 
oriented methods might provide an elegant solution to this 
problem, no tool has yet provided such a solution. The 
evolution of tools towards object orientation will thus need to 
be closely followed 

Because of the difference in version between ORACLE 
database and CASE tools (one version behind the database) the 
tables and forms that were generated were not making full use 
of the capabilities provided by the latest database version. A 
new version is scheduled for end of this year. 

Several CASE tools exist on the market, each having their 
specific development area. In the absence of a fully integrated 
software engineering environment, one probably have to live 
with a variety of such tools. Customers would already be 
greatly helped if all tools could agree on a (set of) common 
repository (ies). 

As a last and modest preliminary conclusion from the 
management point of view: with rather limited resources it 
was possible to introduce a reasonably large team into this, for 
CERN's accelerators at least, new technology; one can 
estimate the number of software engineers in the accelerator 
sector to date who are growing familiar with CASE, to around 
30. 

533 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE01

CASE and Software Engineering

S15CSE01

533

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



ACKNOWLEDGEMENTS 

The authors are indebted to their colleagues at the European [IJ 
Southern Observatory, Garching-bei-MUnchen, Drs. G. Raffi 
and K. Wirenstrand, for valuable discussions and exchange of [2] 
experience in the course of the evaluation of RTEE. They also 
benefitted from the professional advice and consultancy of Drs. 
J. Davis and L. Hickman both with ORACLE Corporation, [3] 
U.K. [4] 

534 

[5] 
[6J 

REFERENCES 

B.W. Boehm, Software Engineering Economics, 1981, 
p. 16. 
The Future of computed aided Programming, Corporate 
Communications 09/88 on "How will Technology 
affect America in the next 10 Years?", AEG 1988. 
B.W. Boehm, op. cit., p.118 
D.J .L. Martin, Practical Improvements in the 
Management of Real-Time Software Projects, 1st 
IFAC Workshop on Experience with the Management 
of Software Projects, May 14-16, 1986, Heidelberg, 
FRG. 
Computerworld, April 22, 1991, p. 76. 
Yourdon, Modem Sructured Analysis, 1989. 

3rd Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS1991, Tsukuba, Japan JACoW Publishing

ISBN: 978-3-95450-254-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS1991-S15CSE01

S15CSE01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
19
92
/2
0
24
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

534 CASE and Software Engineering


