TOPB  —  Control System Evolution   (16-Oct-07   16:40—18:00)

Chair: E. Bjorklund, LANL, Los Alamos, New Mexico

Paper Title Page
TOPB01 Upgrade Program of the PSI High Intensity Cyclotron 259
 
  • D. Anicic, A. C. Mezger, D. Vermeulen, T. Korhonen
    PSI, Villigen
 
  The PSI 590-MeV Cyclotron is already more than 30 years in operation. However, it still holds the world record in continuous beam power. There is an active experiment program being pursued, and new experiments are planned and being built. In addition, the beam intensity is being upgraded by 50%. The control system has been through several incremental upgrades. However, the new requirements and other developments at PSI (other accelerator facilities) force again an upgrade. This time the whole architecture of the system is to be changed. The controls hardware architecture will be changed and the underlying software will move to EPICS. All this has to happen without compromising the operation schedule. In the upgrade program we are planning to benefit from several new developments, both in-house and together with the community. The central technologies to be used will be presented. The issue of how to tackle the somewhat contradictory goals of upgrading on the fly will be discussed.  
slides icon Slides  
TOPB02 Improvement of Tore Supra Real Time Processing Capability Using Remote PCs 262
 
  • B. Guillerminet, F. Leroux, D. Molina, N. Ravenel, P. H. Moreau
    EURATOM-CEA, St Paul Lez Durance
 
  The Tore Supra tokamak is the largest superconducting magnetic fusion facility. Its real time measurements and control system is designed to deal with continuous acquisition during the plasma discharge, fast acquisition (sampling frequency up to 4 GHz) and Real Time (RT) data processing. The simultaneous control of an increasing number of plasma parameters aiming at tokamak operations in a fully steady state regime makes fast acquisitions and RT data processing more and more de-manding. The Tore Supra Data Acquisition System (DAS) is based mainly on VME bus acquisition units using Lynx OS 3.1 as operating system. Some units are not able any more to handle in parallel the data flow rate (about 100ko/s increasing up to 6Mo/s during fast acquisition phase) and the RT processing. Furthermore, the time delay between two fast acquisition phases must be reduced to be able to catch fast plasma events. To cope with these needs, the data processing capability has been enhanced while preserving the existing acquisition system. A new DAS layer containing Linux-PC has been implemented. The link between the Lynx-OS layer and the Linux layer is ensured by a 100-Mbps Ethernet link.  
TOPB03 The Evolution of the ELETTRA Control System 265
 
  • L. Pivetta, C. Scafuri
    ELETTRA, Basovizza, Trieste
 
  The evolution of the ELETTRA control system is presented by focusing on the major technical upgrades. The ElETTRA control system has been in operation since 1993. The orginal control system architecture was based on a three layer design. A field bus connected the low level computers used to interface the accelerator devices whilst a ten megabit shared Ethernet network linked the middle layer computers to the servers and operator workstations. A first control system upgrade started in 1998 in order to dismiss the field bus and to provide more computing power. A couple of years later a major rework of the network infrastructure was carried out with the introduction of a switched Ethernet architecture. Starting from 2003, in view of the construction of a new booster injector for the storage ring and of the FERMI@elettra free electron laser, new control system hardware and software platforms have been selected. Driven by the additional necessity of cutting development and maintenance costs, the Tango control system has been adopted. The tools developed in order to effectively manage the integration and coexistence of the legacy and new control system are described.  
slides icon Slides  
TOPB04 Control System of the KEKB Accelerator Complex 268
 
  • A. Akiyama, N. Kamikubota, T. T. Nakamura, J.-I. Odagiri, M. Satoh, T. Suwada, N. Yamamoto, K. Furukawa
    KEK, Ibaraki
 
  The KEKB asymmetric electron-positron collider complex consists of 8-GeV Linac, high-energy and low-energy rings. Some of the resources were inherited from the previous TRISTAN project, and also they are shared with Photon Factory and PF-AR light sources. In order to realize the long lifespan of the system de-facto and international standard technologies were employed since the early stage, which have been efficiently operated. Several gateway methods were implemented to integrate heterogeneous sub-systems, which are gradually converted into EPICS. Scripting languages are employed for higher-level applications. The ever-evolving control system has enabled flexible and reliable beam operations at KEKB throughout the long period.  
slides icon Slides