

Control System Upgrade program of the PSI 590 MeV Proton Cyclotron

T.Korhonen, D.Anicic, A.Mezger, D.Vermeulen

representing the work of several people of the controls and other sections at PSI

- Short introduction to the PSI Proton Cyclotron
- Motivation, constraints and plan
- Some hardware solutions
- Software issues we have encountered (so far)
- Wins and losses
- Summary

Introduction to the PSI Proton Cyclotron

- History
 - The PSI Ring cyclotron was commissioned in 1974
 - During the years, the main use has shifted from particle physics to applications of neutron scattering and uSR (which also motivates to keep the machine going)
- Present
 - Beam current 2 mA, 1.2 MW
 beam power. Still a world record
 in (continuous) beam power
 - Successfully operated a liquid metal target (MEGAPIE) in 2006
 - Beam current upgrade program is in progress (many parts are already finished), goal is 3 mA

Power map of worldwide proton accelerators

Introduction to the PSI Proton Cyclotron

Introduction to the PSI Proton Cyclotron

- The facility
 - Three accelerators
 - Cockroft-Walton, Injector and main cyclotron
- Control system
 - About 100 CAMAC crates
 - Expected to be replaced with ~60 VME64x crates (larger degree of integration)
 - In-house developed software "ACS" (not to be confused with other software packages with the same acronym).

Main motivations for the upgrade

- The hardware is aging and needs to be replaced
 - Several generations of hardware, developed by people who are not around anymore, sometimes not well known (do not touch)
 - Limited number of replacement and spare cards
 - Wearing parts need more and more maintenance (CAMAC power supplies, fan units) and special skills
 - No new developments done in CAMAC, desire to standardize the hardware
- The same controls groups (section) are responsible for all PSI accelerators Cyclotron, PROSCAN, SLS, XFEL (project)
 - Use standard tools, hardware and software whenever possible, everywhere
 - Make it easier for controls people to work on different projects within PSI
 - Make it easier for different groups to work on different projects
 - Diagnostics, RF, etc.
 - Concentrate efforts on EPICS development

Constraints of the upgrade

- Operation shall not suffer
 - Existing functionality should at least be reproduced
 - Any major changes shall be done during the yearly shutdown
 - Operation safety needs to be guaranteed
- New target facility (UCN)
 - Will get a macro-pulsed beam(1% duty cycle to UCN, 99% to other targets/SINQ), switched by a kicker magnet
 - Need to introduce synchronization hardware
- Beam current upgrade
 - Need to introduce new (diagnostics) hardware that can cope with the high (and low) currents
 - For example, new BPM electronics
 - New developments are all in VME

Evolution: rough sketch

- First: replacement of the controls hardware
 - Will be done gradually, as soon as the replacements become available
 - Timescale is ~4 years from now
- Then, migrate to EPICS on the low (IOC) level
 - There would be little benefit writing drivers for hardware that we are going to replace soon anyway
- Port as much as possible the good features of the "ACS" software to EPICS
 - Extensive configuration database, all IO and applications configured from a single source
 - Device discovery using the configuration data
 - Several smaller features that are used in application development and people are familiar with
- Finally, convert all the applications, and modify them to best utilize EPICS facilities
 - Develop some new record types to reproduce features of the existing system

Hardware issues

• New generation of electronics

- Use the same hardware that is and will be used for other projects and facilities, as far as possible
- Not everything can be covered with standard hardware
- Many solutions are already developed and even deployed, some are under development (some examples in the next slides)
- The beam switching operation of the new UCN source requires a new method to synchronize the operation of several components (beam kicker, diagnostics, interlock systems.)

Power supply controls

- Most power supplies are old, analogue controlled. Gradually being replaced by new, digitally controlled ones. Problem: this process will be slow! (> 10 years)
- Each PS has a local controller, connected by a fieldbus ("Road-C", or CAN)
 - Uncomfortable mixture, difficult to troubleshoot
- Solution: MultiIO (FPGA-based controller, with AD/DA, DI/O)
 - Control interface is compatible to the "PSI" digital power supply
 - Can be simply "dropped in" to the existing controls. Changing to digital PS a matter of replacing a control cable (optical fiber)
- Makes us independent of the PS replacement schedule

Beam diagnostics

- The diagnostic electronics needs to be rebuilt as well
- The solutions are based on a FPGA-based board and signal conditioning boards for each application
- The same base board with different firmware is used for several applications
- The "VPC"-board was developed at PSI but is commercially available from a company

Synchronization

- For the UCN operation, the beam kicker, diagnostic devices and the interlock system need to be synchronized
 - We will be sweeping a >1 MW beam with a kicker! (reliability is essential)
 - Diagnostics need to be warned of a coming (or disappearing) beam
 - Experiments want to know about the (regular) beam interruptions
 - Interlock system needs to know when the kick happens
- Here we can utilize the timing system developed for SLS (but use the newer evolution versions of the board)
 - Overkill in terms of precision (not needed for injection, for example) but is a well-known system for us (easy to integrate)
 - Several useful recent enhancements: real-time, deterministic data distribution, configurable I/O blocks (like interlock input)

Software migration to EPICS

- There is a functioning software solution that has to be replaced
 - Lots of applications with their look and (especially) feel
- In many ways, the architecture is not that far from EPICS
 - But, there are a number of differences

Encountered software issues (#1)

- Differences in how things work in ACS vs. EPICS
 - Different paths of evolution, different philosophies: Buffered I/O and direct network I/O (reading/writing of values)
 - Consequently, the applications have been written with different assumptions (do/how do/I know that my value went to the hardware? When was this value read?)
 - The behavior has to be learnt and understood

Encountered software issues (#2)

- Thick vs. thin clients
 - Where to put the application intelligence?
 - ACS: In the workstation layer
 - EPICS: both client and server (IOC) layer possible, but many functions fit best to the IOC level
 - For example, operation sequencing following a fixed schedule
 - This has implications on how to best proceed
 - In EPICS, abstraction starts at device support level (mapping to record types)
 - Old applications have not been written with the same abstractions. Will probably need intermediate steps

Merits of evolution

- What will we benefit from this?
 - Maintenance
 - One set of hard- and software to be looked after
 - New features and possibilities
 - Low-level intelligence (instead of client level apps)
 - Alarms, pushing alarms
 - IOC-level communication, synchronous actions, time correlation
 - Co-operation, sharing of knowledge
 - Opportunity to improve application interface(s)
 - Introduce a middle layer? (depends on progress with other projects)

Merits of evolution

- What we do not want to lose?
 - Database-driven configuration
 - Consistency of the system, everything from a single source
 - Lots of know-how, but mapping to EPICS structure is not a simple task
 - Implementation rules not very strict for device connections (I/O parameters)
 - Device & property discovery in application layer
 - By-product of the database
 - Can be resolved if we manage to (re)implement the configuration database
 - Need support from channel naming

Merits of evolution

- What will we lose?
 - Diversity
 - Danger of feeling (too) happy with what we have
 - Taking things for granted
 - Some features
 - Try to minimize the loss by design
 - Full database configuration will be a tough goal
 - We may have to compromise between flexibility and full consistency

Conclusions

- Difficulties
 - Lots of constraints to solve
 - Readjusting the style of work
- Challenges
 - Try to provide the best possible systems for the future
- Opportunities
 - The new(er) generation has a chance to re-discover the machine
- Fun
 - We hope to learn a few new things along the way

Thanks to people in and outside of PSI who have participated in discussions and contributed ideas (in various areas)