A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

coupling

Paper Title Other Keywords Page
WPPA34 Extended Application Fields for the Renovated GSI Control System controls, septum, synchrotron, ion-source 386
 
  • L. Hechler, K. Herlo, P. Kainberger, U. Krause, S. Matthies, K. Höppner
    GSI, Darmstadt
  The current GSI control system uses a very monolithic approach that made it difficult to extend the system to other than the original platforms (VME front ends and OpenVMS on the application level). For the present renovation project of the communication layers, flexibility was a major design criterion. Front-end and application levels are connected via CORBA middleware, giving free choice for using various system architectures and programming languages on both levels. While most of the current front-end software will be ported to the existing VME front-end environment, now running Linux, the new system can integrate devices running on various architectures and operating systems into the new GSI control system. To model equipment functionality as independently as possible, generating adapter code from a well-defined XML description of device models is now under development. This will make the task of porting the existing 65 device models (including around 3000 properties) to the new modular approach easier. We will present the current state of this project and future plans.  
 
WPPB40 LCLS Beam-Position Monitor Data Acquisition System controls, monitoring, pick-up, feedback 478
 
  • R. Akre, R. G. Johnson, K. D. Kotturi, P. Krejcik, E. Medvedko, J. Olsen, S. Smith, T. Straumann
    SLAC, Menlo Park, California
  In order to determine the transversal LCLS beam position from the signals induced by the beam in four stripline pickup electrodes, the BPM electronics have to process four concurrent short RF bursts with a dynamic range > 60dB. An analog front end conditions the signals for subsequent acquisition with a waveform digitizer and also provides a calibration tone that can be injected into the system in order to compensate for gain variations and drift. Timing of the calibration pulser and switches, as well as control of various programmable attenuators, is provided by an FPGA. Because no COTS waveform digitizer with the desired performance (>14bit, ≥119MSPS) was available, the PAD digitizer (see separate contribution WPPB39) was selected. It turned out that the combination of a waveform digitizer with a low-end embedded CPU running a real-time OS (RTEMS) and control system (EPICS) is extremely flexible and could very easily be customized for our application. However, in order to meet the BPM real-time needs (readings in < 1ms), a second Ethernet interface was added to the PAD so that waveforms can be shipped, circumventing the ordinary TCP/IP stack on a dedicated link.