A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Plesko, M.

Paper Title Page
WPPB15 Beyond PCs: Accelerator Controls on Programmable Logic 433
 
  • J. Dedic, K. Zagar, M. Plesko
    Cosylab, Ljubljana
 
  The large number of gates in modern FPGAs including processor cores allows implementation of complex designs, including a core implementing Java byte-code as the instruction set. Instruments based on FPGA technology are composed only of digital parts and are totally configurable. Based on experience gained on our products (a delay generators producing sub-nanosecond signals and function generators producing arbitrary functions of length in the order of minutes) and on our research projects (a prototype hardware platform for real-time Java, where Java runtime is the operating system and there is no need for Linux), I will speculate about possible future scenarios: A combination of an FPGA processor core and custom logic will provide all control tasks, slow and hard real-time, while keeping our convenient development environment for software such as Eclipse. I will illustrate my claims with designs for tasks such as low-latency PID controllers running at several dozen MHz, sub-nanosecond resolution timing, motion control, and a versatile I/O controller–all implemented in real-time Java and on exactly the same hardware, just with different connectors.  
WPPB20 Extended MicroIOC Family (LOCO) 439
 
  • D. Golob, R. Kovacic, M. Pelko, M. Plesko, A. Podborsek, M. Kobal
    Cosylab, Ljubljana
 
  MicroIOC is an affordable, compact, embedded computer designed for controlling and monitoring of devices via a control system (EPICS, ACS, and TANGO are supported). Devices can be connected to microIOC via Ethernet, serial, GPIB, other ports, or directly with digital or analog inputs and outputs, which makes microIOC a perfect candidate for a platform that integrates devices into your control system. Already over 90 microIOCs are installed in 18 labs over the world. LOgarithmic COnverter (LOCO) is a specialized microIOC used as a high-voltage power-supply distribution system for vacuum ion pumps. A single high-voltage power-supply controller can be used for delivering power to multiple ion pumps. A highly-accurate logarithmic-scale current measurement is provided on each pump, enabling an affordable and reliable pressure measurement ranging from 10-12 to 10-4 mbar.