
BEYOND PCS: ACCELERATOR CONTROLS ON PROGRAMMABLE
LOGIC

J. Dedič, M. Pleško, K. Žagar,
Cosylab, Ljubljana, Slovenia

Abstract
Based on experience gained on our products (a delay

generators producing sub-nanosecond signals and
function generators producing arbitrary functions of
length in the order of minutes) and on our research
projects (a prototype hardware platform for realtime Java,
where Java runtime is the operating system and there is
no need for Linux), we will speculate about possible
future scenarios: A combination of an FPGA processor
core and custom logic will provide all control tasks, slow
and hard real-time, while keeping our convenient
development environment for software such as Eclipse.
We will illustrate those claims with designs for tasks such
as low-latency PID controllers running at several dozen
MHz, sub-nanosecond resolution timing, motion control
and a versatile I/O controller - all implemented in real-
time Java and on exactly the same hardware - just with
different connectors.

INTRODUCTION
When performance is paramount, one of the techniques a

skilled electronics engineer would use is reconfigurable
computing [1]. In terms of performance, this approach is
the second best to what is achievable with commercially
available electronics, only surpassed by application
specific integrated circuits (ASIC).

Pure programmable hardware implementations might be
costly in terms of development effort, however. Some
problems are inherently difficult to solve in hardware
using programming languages such as VHDL and
Verilog. To this end, FPGA vendors offer generic
processor cores. In some cases, the cores are available in
form of VHDL code (e.g., Altera NIOS or Xilinx
PicoBlaze), whereas in higher-end FPGAs multiple
powerful cores are fixed on the chip (e.g., Xilinx Virtex II
includes PowerPC cores).

However, development in a C-like language is still
cumbersome. Illegal use of memory, buffer overruns,
memory leaks, relatively long compilation times,
portability issues and structured programming approach
contribute to decreased efficiency, which is in some cases
even 2 to 10 times smaller than one achievable with
higher-level programming languages, such as Java.

REQUIREMENTS
This section lists some of the requirements that a

hardware Java platform would have to meet in order to
retain high-level of development efficiency.

Standard Java constructs should be retained. I.e., no new
keywords should be introduced into the language. This
way, existing tools for Java development could be

leveraged, such as high-productivity integrated
development environments (IDEs, e.g., Eclipse or
NetBeans), compilers, byte-code manipulation tools and
code verifiers.

1. Hardware should be composed of modules. Each
module would consist of the hardware part
(templated VHDL files) and software part
(configurable drivers). When a module would be
instantiated, the software drivers would be
automatically configured for the instantiated
hardware (e.g., matching bus addresses, IRQ
numbers, etc.).

2. Static (compile-time) checking should be possible.
For example, it should be impossible to overlap
register addresses of modules on a bus. Ideally, the
register addresses would be assigned automatically.

3. Support for debugging. A debug console should
be available through a serial port. In addition, Java
virtual machine should support remote debugging
using existing tools. JTAG diagnostics of hardware
should also be possible.

4. Field upgrades of hardware and ROM software
should be possible.

One-size-fits-all board: ideally, a general-purpose
board design would exist, so that boards would not have
to be developed for each application specifically. A
modular board composition (IndustryPack, PC/104,
VME) is a good approach to achieve this.

EXAMPLE APPLICATIONS

Nanosecond Resolution Timing
In particle accelerator controls, sub-nanosecond

resolution timing is sometimes required due to high speed
of particles whose orbit needs to be controlled. A
particular application called for a controllable delay
generator, capable of producing output signals that are
delayed relative to a trigger signal for amount of time in
the order of a nanosecond. Figure 1 shows an example of
a trigger signal and the resulting output signals, which are
delayed by tA and tB, respectively.

To this end, FPGA with a phase locked loop (PLL) can be
employed. The PLL is capable of multiplying the clock
frequency by a given factor. Thus, if a 500MHz external
clock is used, the PLL can multiply it by 4, achieving a
2GHz clock (0.5 ns temporal resolution). The jitter of this
clock is also very small (in the order of 50 ps), which
makes FPGA technology a good candidate for this
application.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPB15

Hardware Technology

433

Since the delays tA and tB induced by the FPGA-based
delay generator would have to be externally controlled
(ideally through a SCADA-like system using a computer
network), a pure VHDL solution is no longer a feasible
option. Therefore, a co-design approach depicted in
Figure 2 is a reasonable alternative. Here, a processor is
monitoring communication over Ethernet, implementing
TCP/IP or other network stacks required by the SCADA
system, implementing their respective protocols. The
processor then converts the requests from Ethernet to
configuration for the delay generator through a bus
internal to the FPGA. The processor, Ethernet MAC layer
and delay generator are thus all contained in a single
FPGA chip, whose input pin is a trigger, and whose
output pins are correspondingly delayed. (Apart from
these pins, also pins for reset, clock, ground, power
supply, etc., are required).

Versatile I/O Controller
In automation applications, integration with many kinds

of devices is required. The devices are equipped with
various control interfaces, ranging from analog current,
via serial interfaces (e.g., RS-232, RS-485, etc) to more
sophisticated busses, such as General Purpose
Input/Output Bus (GPIB).

In some cases, for example control of particle
accelerators, the number of devices under control is large,
and there are tens of thousands of process variables that
need to be controlled or monitored. Consequentially, the
density of I/O channels is high, and entire racks are
devoted to front-end control equipment (also called
Input/Output Controller, IOC). This control equipment is
responsible for performing simple tasks, such as
communicating with devices with their respective
protocol, initializing devices, converting the values
returned by devices from raw to engineering units, etc.
One of the control equipment’s most important
responsibilities is to make the connected devices available
to a SCADA system via a computer network.

Implementing an IOC in programmable hardware might
well be a very economic and efficient approach. The
inputs and outputs of these controllers are then bound to
pins of the FPGA, and from there to the IOC’s board,
where transceivers implementing the physical layer of
communication are placed.

The pin count of FPGAs is fairly large – several
hundred pins are available for application-specific
purposes (e.g., Altera offers FPGAs from 484 to 1508
pins). One UART serial line requires 4 signals, which
means that physically more than 100 serial connections
could be handled by a single FPGA.

Since voltage levels of FPGA’s pins are not arbitrary, the
board would require transceivers to implement the
physical layer of the communication stack. Also, some
I/O controllers are not easily available or are difficult to
implement. One such example is GPIB – in this particular
case, integrated circuits are available, which can be
integrated with FPGA through a standard bus (e.g.,
National Instruments’ TNT5002, which uses PCI bus).

Well though-out modular design of the board would allow
re-use of the same design for various I/O configurations.
Such a board would either contain a very large pin bank
to which connectors would be attached, or feature an
extensible interconnect bus (VME, IndustryPack, etc.).

ACHIEVING HARD REALTIME
In automation, hard real-time interlocks are frequently a

requirement. When an interlock is triggered, a reaction
(e.g., a shutdown or switching-off of an output) must
commence immediately. In FPGAs, such interlocks can
be implemented directly in hardware. If they are
implemented asynchronously, the reaction time is only
limited by propagation delays, and doesn’t even have to
wait till the next period of the system clock.

time

trigger

output A

output B

tA

tB
Figure 1: Signals of a delay generator.

FPGA

Delay
Generator

Processor

trigger

W
is

hb
on

e

output A

output B

Ethernet
MAC

Ethernet MII

tA, tB

Figure 2: Block diagram of a delay generator.

WPPB15 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Hardware Technology

434

VHDL code for this circuit (Listing 1) shows a VHDL
design pattern where an interlock is implemented without
affecting the rest of the logic – thus, the safety aspect of
the system can be introduced in a design systematically,
without affecting the design of the logic.

HARDWARE ARCHITECTURE
The architecture follows an established pattern: it

features a CPU, memory/storage (on-chip and off-chip),
various modules, and a bus that interconnects all of the
components together (Figure 3).

For the CPU core, we propose using a standard,
possibly open, implementation. Cores implementing the
Java virtual machine specification in hardware already
exist, for example Java Optimized Processor (JOP, [2]).

A good candidate for the bus is Wishbone [3].
Wishbone is a flexible, yet simple bus for interconnection
of cores within a programmable chip. Since many
hardware components (such as Ethernet MAC
implementations) exist that offer a wishbone interface,
supporting wishbone would allow leveraging these
implementations.

CONCLUSION
In this paper, we have tried to illustrate the advantages

and application potential of programmable logic. Since
this approach offers a lot of freedom, a well thought-out
architecture should be agreed upon to prevent
unnecessary divergence of efforts and allow re-use of
components and methodologies. Ideally, the approach
would also leverage the standard integrated development
environments, reducing the learning curve of engineers
making use of the technology.

REFERENCES
[1] K. Compton, S. Hauck. “Reconfigurable Computing:

A Survey of Systems and Software”, ACM
Computing Surveys, Vol. 34, Np. 2, June 2002, pp.
171-210.

[2] Martin Schöberl. “JOP. A Java Optimized Processor
for Embedded Real-Time Systems”, PhD thesis,
Vienna University of Technology, January 2005,
http://jopdesign.com.

[3] opencores.org. “WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores”,
revision B.3, September 2002.

Figure 3: Overview of the hardware architecture.

FPGA

Java Optimized Processor
Java Optimized Processor

RAM
(stack)

Cache

Microcode
ROM

SimpCon
I/O

RAM
(board)

Flash

FPGA cfg
(copy 1)

FPGA cfg
(copy 2)

ROM
(copy 1)

ROM
(copy 2)

Filesystem(s)

WishboneMemory access
logic

RAM
(FPGA)

Module B Module C

Module A

Module D

-- synchronous implementation of the logic

process(clock)

begin

 if rising_edge(clock) then

 begin

 logic <= …;

 end if;

end process;

-- asynchronous handling of an interlock

output <= '0' when interlock='0' else logic;

Listing 1: VHDL code of an interlock.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPB15

Hardware Technology

435

