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Abstract 
Based on experience gained on our products (a delay 

generators producing sub-nanosecond signals and 
function generators producing arbitrary functions of 
length in the order of minutes) and on our research 
projects (a prototype hardware platform for realtime Java, 
where Java runtime is the operating system and there is 
no need for Linux), we will speculate about possible 
future scenarios: A combination of an FPGA processor 
core and custom logic will provide all control tasks, slow 
and hard real-time, while keeping our convenient 
development environment for software such as Eclipse. 
We will illustrate those claims with designs for tasks such 
as low-latency PID controllers running at several dozen 
MHz, sub-nanosecond resolution timing, motion control 
and a versatile I/O controller - all implemented in real-
time Java and on exactly the same hardware - just with 
different connectors. 

INTRODUCTION 
When performance is paramount, one of the techniques a 

skilled electronics engineer would use is reconfigurable 
computing [1]. In terms of performance, this approach is 
the second best to what is achievable with commercially 
available electronics, only surpassed by application 
specific integrated circuits (ASIC). 

Pure programmable hardware implementations might be 
costly in terms of development effort, however. Some 
problems are inherently difficult to solve in hardware 
using programming languages such as VHDL and 
Verilog. To this end, FPGA vendors offer generic 
processor cores. In some cases, the cores are available in 
form of VHDL code (e.g., Altera NIOS or Xilinx 
PicoBlaze), whereas in higher-end FPGAs multiple 
powerful cores are fixed on the chip (e.g., Xilinx Virtex II 
includes PowerPC cores). 

However, development in a C-like language is still 
cumbersome. Illegal use of memory, buffer overruns, 
memory leaks, relatively long compilation times, 
portability issues and structured programming approach 
contribute to decreased efficiency, which is in some cases 
even 2 to 10 times smaller than one achievable with 
higher-level programming languages, such as Java. 

REQUIREMENTS 
This section lists some of the requirements that a 

hardware Java platform would have to meet in order to 
retain high-level of development efficiency. 

Standard Java constructs should be retained. I.e., no new 
keywords should be introduced into the language. This 
way, existing tools for Java development could be 

leveraged, such as high-productivity integrated 
development environments (IDEs, e.g., Eclipse or 
NetBeans), compilers, byte-code manipulation tools and 
code verifiers. 

1. Hardware should be composed of modules. Each 
module would consist of the hardware part 
(templated VHDL files) and software part 
(configurable drivers). When a module would be 
instantiated, the software drivers would be 
automatically configured for the instantiated 
hardware (e.g., matching bus addresses, IRQ 
numbers, etc.). 

2. Static (compile-time) checking should be possible. 
For example, it should be impossible to overlap 
register addresses of modules on a bus. Ideally, the 
register addresses would be assigned automatically. 

3. Support for debugging. A debug console should 
be available through a serial port. In addition, Java 
virtual machine should support remote debugging 
using existing tools. JTAG diagnostics of hardware 
should also be possible. 

4. Field upgrades of hardware and ROM software 
should be possible. 

One-size-fits-all board: ideally, a general-purpose 
board design would exist, so that boards would not have 
to be developed for each application specifically. A 
modular board composition (IndustryPack, PC/104, 
VME) is a good approach to achieve this. 

EXAMPLE APPLICATIONS 

Nanosecond Resolution Timing 
In particle accelerator controls, sub-nanosecond 

resolution timing is sometimes required due to high speed 
of particles whose orbit needs to be controlled. A 
particular application called for a controllable delay 
generator, capable of producing output signals that are 
delayed relative to a trigger signal for amount of time in 
the order of a nanosecond. Figure 1 shows an example of 
a trigger signal and the resulting output signals, which are 
delayed by tA and tB, respectively. 

To this end, FPGA with a phase locked loop (PLL) can be 
employed. The PLL is capable of multiplying the clock 
frequency by a given factor. Thus, if a 500MHz external 
clock is used, the PLL can multiply it by 4, achieving a 
2GHz clock (0.5 ns temporal resolution). The jitter of this 
clock is also very small (in the order of 50 ps), which 
makes FPGA technology a good candidate for this 
application. 
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Since the delays tA and tB induced by the FPGA-based 
delay generator would have to be externally controlled 
(ideally through a SCADA-like system using a computer 
network), a pure VHDL solution is no longer a feasible 
option. Therefore, a co-design approach depicted in 
Figure 2 is a reasonable alternative. Here, a processor is 
monitoring communication over Ethernet, implementing 
TCP/IP or other network stacks required by the SCADA 
system, implementing their respective protocols. The 
processor then converts the requests from Ethernet to 
configuration for the delay generator through a bus 
internal to the FPGA. The processor, Ethernet MAC layer 
and delay generator are thus all contained in a single 
FPGA chip, whose input pin is a trigger, and whose 
output pins are correspondingly delayed. (Apart from 
these pins, also pins for reset, clock, ground, power 
supply, etc., are required). 

 

Versatile I/O Controller 
In automation applications, integration with many kinds 

of devices is required. The devices are equipped with 
various control interfaces, ranging from analog current, 
via serial interfaces (e.g., RS-232, RS-485, etc) to more 
sophisticated busses, such as General Purpose 
Input/Output Bus (GPIB). 

In some cases, for example control of particle 
accelerators, the number of devices under control is large, 
and there are tens of thousands of process variables that 
need to be controlled or monitored. Consequentially, the 
density of I/O channels is high, and entire racks are 
devoted to front-end control equipment (also called 
Input/Output Controller, IOC). This control equipment is 
responsible for performing simple tasks, such as 
communicating with devices with their respective 
protocol, initializing devices, converting the values 
returned by devices from raw to engineering units, etc. 
One of the control equipment’s most important 
responsibilities is to make the connected devices available 
to a SCADA system via a computer network. 

Implementing an IOC in programmable hardware might 
well be a very economic and efficient approach. The 
inputs and outputs of these controllers are then bound to 
pins of the FPGA, and from there to the IOC’s board, 
where transceivers implementing the physical layer of 
communication are placed. 

The pin count of FPGAs is fairly large – several 
hundred pins are available for application-specific 
purposes (e.g., Altera offers FPGAs from 484 to 1508 
pins). One UART serial line requires 4 signals, which 
means that physically more than 100 serial connections 
could be handled by a single FPGA. 

Since voltage levels of FPGA’s pins are not arbitrary, the 
board would require transceivers to implement the 
physical layer of the communication stack. Also, some 
I/O controllers are not easily available or are difficult to 
implement. One such example is GPIB – in this particular 
case, integrated circuits are available, which can be 
integrated with FPGA through a standard bus (e.g., 
National Instruments’ TNT5002, which uses PCI bus). 

Well though-out modular design of the board would allow 
re-use of the same design for various I/O configurations. 
Such a board would either contain a very large pin bank 
to which connectors would be attached, or feature an 
extensible interconnect bus (VME, IndustryPack, etc.). 

ACHIEVING HARD REALTIME 
In automation, hard real-time interlocks are frequently a 

requirement. When an interlock is triggered, a reaction 
(e.g., a shutdown or switching-off of an output) must 
commence immediately. In FPGAs, such interlocks can 
be implemented directly in hardware. If they are 
implemented asynchronously, the reaction time is only 
limited by propagation delays, and doesn’t even have to 
wait till the next period of the system clock. 
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Figure 1: Signals of a delay generator. 

 

FPGA

Delay 
Generator

Processor

trigger

W
is

hb
on

e

output A

output B

Ethernet 
MAC

Ethernet MII

tA, tB

 
Figure 2: Block diagram of a delay generator. 
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VHDL code for this circuit (Listing 1) shows a VHDL 
design pattern where an interlock is implemented without 
affecting the rest of the logic – thus, the safety aspect of 
the system can be introduced in a design systematically, 
without affecting the design of the logic. 

 

HARDWARE ARCHITECTURE 
The architecture follows an established pattern: it 

features a CPU, memory/storage (on-chip and off-chip), 
various modules, and a bus that interconnects all of the 
components together (Figure 3). 

For the CPU core, we propose using a standard, 
possibly open, implementation. Cores implementing the 
Java virtual machine specification in hardware already 
exist, for example Java Optimized Processor (JOP, [2]). 

A good candidate for the bus is Wishbone [3]. 
Wishbone is a flexible, yet simple bus for interconnection 
of cores within a programmable chip. Since many 
hardware components (such as Ethernet MAC 
implementations) exist that offer a wishbone interface, 
supporting wishbone would allow leveraging these 
implementations. 

CONCLUSION 
In this paper, we have tried to illustrate the advantages 

and application potential of programmable logic. Since 
this approach offers a lot of freedom, a well thought-out 
architecture should be agreed upon to prevent 
unnecessary divergence of efforts and allow re-use of 
components and methodologies. Ideally, the approach 
would also leverage the standard integrated development 
environments, reducing the learning curve of engineers 
making use of the technology. 
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Figure 3: Overview of the hardware architecture.  
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-- synchronous implementation of the logic 

process(clock) 

begin 

 if rising_edge(clock) then 

 begin 

  logic <= …; 

 end if; 

end process; 

 

-- asynchronous handling of an interlock 

output <= '0' when interlock='0' else logic; 

Listing 1: VHDL code of an interlock. 

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA WPPB15

Hardware Technology

435


