A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Martinez, M. P.

Paper Title Page
TPPB29 The OPC-Based System at SNS: An EPICS Supplement 223
 
  • R. J. Wood, M. P. Martinez
    ORNL, Oak Ridge, Tennessee
 
  The Power Monitoring System at the Spallation Neutron Source (SNS) is a Windows-based system using OLE for Process Control (OPC) technology. It is employed as the primary vehicle to monitor the entire SNS Electrical Distribution System. This OPC-based system gathers real-time data, via the system's OPC server, directly from the electrical devices: substations, generators, and Uninterruptible Power Supply (UPS) units. Thereupon, the OPC-EPICS softIOC interface reads and sends the data from the OPC server to EPICS, the primary control system of SNS. This interface provides a scheme for real-time power data to be shared by both systems. Unfortunately, it engenders obscure anomalies that include data inaccuracy and update inconsistency in EPICS. Nevertheless, the OPC system supplements the EPICS system with user-friendly applications—besides the ability to compare real-time and archived data between the two systems—that enable performance monitoring and analysis with ease. The OPC-based system at SNS is a complimentary system to EPICS.  
RPPA13 The Electrical Power Project at SNS 544
 
  • M. P. Martinez, J. D. Purcell, E. Danilova
    ORNL, Oak Ridge, Tennessee
 
  The Electrical Power Project consists of recording data on all power-distribution devices necessary to SNS operations and how they are connected, assigning a valid name to each device and describing it, along with loading this information and the relationships into the SNS Oracle database. Interactive web-based applications allow users to display and easily update power-related data. In the case of planned electrical outages, a complete list of affected devices (including beam-line devices) will be available to controls, diagnostics, and other groups in advance. The power-tree information can be used to help diagnose electrical problems of any specific device. Fast access to device characteristics and relations from any web browser will help technical personnel quickly identify hazards and prevent electrical accidents, thereby ensuring SNS electrical safety. The project was completed by a special task team containing individuals from different groups. The paper covers the project history, QA issues, technology used, and current status.