A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Manduchi, G.

Paper Title Page
TPPA21 MDSplus Real-Time Data Access in RTAI 132
  • A. Barbalace, A. Luchetta, C. Taliercio, G. Manduchi
    Consorzio RFX, Euratom ENEA Association, Padova
  • T. W. Fredian
    MIT, Cambridge, Massachusetts
  • J. A. Stillerman
    MIT/PSFC, Cambridge, Massachusetts
  The MDSplus package is widely used in Nuclear Fusion research for data acquisition and management. Recent extensions of the system provide useful features for real-time applications, such as the possibility of locking selected data items in memory and real-time notification. The real-time extensions of MDSplus have been implemented as a set of C++ classes and can be easily ported to any target architecture by developing a few adapter classes. The real-time data access layer of MDSplus is currently available for Windows, Linux, VxWorks and RTAI. In particular, the RTAI platform is very promising in this context because it allows the co-existence of offline, non-real-time tasks with real-time ones. It is hence possible to devise an architecture where real-time functionality is handled by a few selected tasks using the real-time data access layer of MDSplus, whereas background, non-real-time activity is carried out by “traditional” Linux tasks. This organization may be of interest for the next generation of fusion devices with long-duration discharges, during which the system has to provide feedback control in real time and to sustain continuous data acquisition and storage.  
TPPB28 Preliminary Design Concepts for the Control and Data Acquisition Systems of the ITER Neutral Beam Injector and Associated Test Facility 220
  • G. Manduchi, A. Luchetta
    Consorzio RFX, Euratom ENEA Association, Padova
  ITER is a joint international research and development project aiming to demonstrate the scientific and technical feasibility of fusion power. The ITER Neutral Beam Injector (NBI, negative D2 ion source, 1MV acceleration voltage, 40A ion current, 16.5MW beam power, 1 hour continuous operation) is a major component of ITER and will be supported by a dedicated test facility (NBTF). The NBI and the NBTF are being designed with the goal to have one injector fully operational on the ITER device in 2016. The two items need separate, but closely interacting, control and data acquisition systems (CDAs). The NBI CDA system will manage the NBI device and will be installed at the ITER site; the NBTF CDA system will manage the test facility and in particular will enable extensive scientific exploitation of the NBI before its final installation at the ITER site. The paper reports on the design activity for both CDA systems, including the definition of the system requirements, the functional system structure, and the preliminary system architecture.