A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kozsar, I.

Paper Title Page
RPPB31 Distributed Timing Diagnostic Applications 677
 
  • I. Kozsar, J. H. Lewis, J. Serrano, P. Kennerley
    CERN, Geneva
 
  The CERN timing system delivers events to the accelerator complex via a distribution network to receiver modules located around the laboratory. These modules generate pulses for nearby equipment and interrupts for the local host. Despite careful planning, hardware failure and human error can lead to anomalies within the control system. Diagnosing such errors requires a formal description of the logical and topological timing layout. This paper describes the design and implementation of a suite of timing diagnostic software applications that allow users to quickly diagnose and remedy faults within the CERN timing system.  
FOAA03 The CERN LHC Central Timing, a Vertical Slice 711
 
  • P. Alvarez, J. C. Bau, S. Deghaye, I. Kozsar, J. Serrano, J. H. Lewis
    CERN, Geneva
 
  The design of the LHC central timing system depends strongly on the requirements for a Collider-type machine. The accelerators in the LHC injector chain cycle in sequences, each accelerator providing beam to the next as the energy increases. This has led to a timing system in which time is divided into cycles of differing characteristics. The LHC timing requirements are completely different, there are no cycles, and machine events are linked to machine processes such as injection, ramping, squeezing, physics, etc. These processes are modelled as event tables that can be played independently; the system must also provide facilities to send asynchronous events for punctual equipment synchronization and a real-time channel to broadcast machine information such as the beam type and its energy. This paper describes the implementation of the LHC timing system and also gives details on the synchronization in the LHC injector chain that manufactures various beams for LHC.  
slides icon Slides