A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hsu, K. T.

Paper Title Page
WPPA02 Conceptual Design of the TPS Control System 319
 
  • J. Chen, P. C. Chiu, K. T. Hsu, S. Y. Hsu, K. H. Hu, D. Lee, C.-J. Wang, C. Y. Wu, C. H. Kuo
    NSRRC, Hsinchu
 
  Baseline design of the Taiwan photon Source (TPS) control system of NSRRC is proposed. The control system design is based on EPICS toolkits due to it has large user base in synchrotron light source around the world. Guidelines for hardware platform and operating system choice will be addressed. The standard hardware interface driver is developing and testing now. The asynchronous driver of EPICS will be applied to be the most of standard hardware interface. The expected control system for TPS will provide versatile environments for machine commissioning, operation, and research. The open architecture led machine upgrade or modify without toil. Fewer efforts for machine maintenance are essential. Performance and reliability of the control system will be guarantee form the design phase. Design consideration will be summary in this report.  
RPPA02 Linac RF Feed-forward Development at TLS 523
 
  • K. T. Hsu, J.-Y. Hwang, D. Lee, K.-K. Lin, C. Y. Wu, K. H. Hu
    NSRRC, Hsinchu
 
  Performance of an electron linear accelerator is very important for synchrotron light source operation. Its performance in amplitude and phase of the RF field will decide the quality of extract beam. The RF feed-forward control is helpful to fixed amplitude and phase constant and keeps on stable beam extract. Design consideration and details of the implementation will be summary in this report.  
RPPA38 Fast Orbit Feedback System Upgrade in the TLS 597
 
  • J. Chen, K. T. Hsu, S. Y. Hsu, K. H. Hu, C. H. Kuo, D. Lee, P. C. Chiu
    NSRRC, Hsinchu
 
  Orbit feedback system of the Taiwan Light Source (TLS) has been deployed for a decade. The loop bandwidth was limited by existing hardware. The system cannot remove perturbation caused by fast source. To improve orbit feedback performance, BPM system and corrector power supply are planned to upgrade within a couples of years. New digital BPM electronics will enhance functionality of the BPM system and replace analogy type BPM but due to limited resource, the BPM system will be a mixed type at this moment. The corrector power-supply is also replaced by high performance switching type power supply with wide bandwidth in the same time. It is expected that our upgrade will significantly improve performance of fast orbit feedback.