Author: Watkins, H.A.
Paper Title Page
MOP011 Safety Considerations for Shield Door Control Systems 59
 
  • H.A. Watkins, W.C. Barkley, C.D. Hatch, D. Martinez, D. Rai, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Los Alamos National Lab LDRD
The Accelerator Operations and Technology division is upgrading the control system for a 33-ton shield door that will be used when the Cathodes and RF Interactions in Extremes (CARIE) accelerator begins operations. The door was installed in the 1990¿s but safety standards such as ISO 13849-1 have since emerged which provide safety requirements and guidance on the principles for the design and integration of safety-related parts of a control system. Applying this standard, a safety controller, safety relays and a light curtain barrier have been added to eliminate injury and exposure of personnel to potential hazards during door operations.
LANL Report #: LA-UR-23-25064
 
poster icon Poster MOP011 [0.827 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-MOP011  
About • Received ※ 31 August 2023 — Revised ※ 07 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 22 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP029 A Hybrid Approach to Upgrade Hardware for the Proton Storage Ring Fast Kicker 250
 
  • T. Ramakrishnan, J.I. Duran, H.A. Watkins
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy, contract no. 89233218CNA000001. LA-UR-23-25123
The Los Alamos Neutron Science Center (LANSCE) Proton Storage Ring (PSR) needs precise timing to ensure successful extraction of the bunched protons. The current control system¿s hardware is obsolete and unmaintainable. The task was to replace the 1980¿s era CAMAC control and timing system for the PSR extraction kickers. This included a system which halts charging of the kickers after a duration without firing to prevent equipment damage. A hybrid approach was taken to integrate a Berkeley Nucleonics Corporation (BNC) pulse generator that was controlled by a soft input/output controller (IOC) and National Instrument compact Reconfigurable Input/Output (cRIO) IOC. This allowed for flexibility and modularity of the software and hardware development. This approach built the framework to streamline robust deployment of hybrid systems and develop a solution for upgrades of other LANSCE kickers.
 
poster icon Poster TUP029 [0.679 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP029  
About • Received ※ 06 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 18 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP028 LANSCE High Density Emittance Instrumentation System 413
 
  • L.S. Montoya, S.A. Baily, S.M. Johnson, H.L. Leffler, H.A. Watkins, D.D. Zimmermann
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy, contract no. 89233218CNA000001. LA-UR-23-25123
The Los Alamos Neutron Science Center (LANSCE) is currently upgrading the existing emittance stations with a high-density instrumentation system for emittance measurements in the low energy beam transport region. Emittance measurements were obtained using obsolete legacy equipment. For motion control a switching station with a mechanical mux to switch actuators was used. This caused a single point of failure for all emittance stations and is becoming increasingly unreliable. For data acquisition, two sets of signal conditioning and digitizers were employed and had to be shared between 7 emittance stations. Physical cable swapping was necessary when taking measurements from station to station. A system was developed using dedicated Quad Actuator Controller (QAC) chassis, capable of driving four (4) actuators, and dedicated data acquisition (DAQ) chassis capable of signal conditioning and digitizing up to 80 channels simultaneously. Details of the system development are presented.
 
poster icon Poster WEP028 [0.400 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP028  
About • Received ※ 07 September 2023 — Revised ※ 11 September 2023 — Accepted ※ 25 September 2023 — Issue date ※ 01 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP029 LANSCE QAC/DAQ Wire Scanner Instrumentation Upgrade 415
 
  • L.S. Montoya, S.M. Johnson, H.A. Watkins, D.D. Zimmermann
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy, contract no. 89233218CNA000001. LA-UR-23-25124
High density instrumentation has been developed to upgrade wire scanner beam diagnostic capability in all areas downstream of the Coupled Cavity LINAC (CCL). Transverse beam profile measurements were originally obtained using legacy electronics known as Computer Automated Measurement and Control (CAMAC) crates. CAMAC has become obsolete, and a new wire scanner diagnostic system was developed as a replacement. With high wire scanner device density located in each area, instrumentation was developed to meet that need along with the ability to interface with legacy open-loop controlled actuators and be forward compatible with upgraded closed-loop systems. A high-density system was developed using a Quad Actuator Controller (QAC) and Data Acquisition (DAQ) chassis that pair together using a sequencer when taking measurements. Software improvements were also made, allowing for full waveform functionality that was previously unavailable. Deployment of 52 wire scanner locations in 2022 increased device availability and functionality across the facility. Hardware and software design details along with results from accelerator beam measurements are presented.
 
poster icon Poster WEP029 [2.359 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-WEP029  
About • Received ※ 07 September 2023 — Revised ※ 11 September 2023 — Accepted ※ 14 September 2023 — Issue date ※ 20 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)