Author: Grishin, V.
Paper Title Page
TU1I02 Beam Instrumentation Performance During Commissioning of the ESS Normal Conducting LINAC 136
 
  • I.D. Kittelmann, R.A. Baron, E.C. Bergman, E.M. Donegani, V. Grishin, H. Hassanzadegan, H. Kocevar, N. Milas, R. Miyamoto, M. Mohammednezhad, F. Nilen, D. Noll, K.E. Rosengren, T.J. Shea, R. Tarkeshian, C.A. Thomas
    ESS, Lund, Sweden
 
  Once constructed, the European Spallation Source (ESS) will be a 5MW pulsed neutron source based on a 2 GeV proton linac delivering 2.86 ms long pulses at a 14 Hz repetition rate. This paper focuses on the beam instrumentation performance during the recent linac beam commissioning up to drift tube linac (DTL) tank 4 with 74 MeV output energy. Instrumentation and measurement results will be presented for beam parameters such as current, position, energy, emittance and beam loss.
Proposal by Peter, same proposal as ID 1283 by Wim. Alternative speaker Cyrille Thomas (ESS).
 
slides icon Slides TU1I02 [6.143 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TU1I02  
About • Received ※ 07 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 13 September 2023 — Issue date ※ 01 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP004 Detector Response Studies of the ESS Ionization Chamber 183
 
  • I. Dolenc Kittelmann, V. Grishin
    ESS, Lund, Sweden
  • P. Boutachkov
    GSI, Darmstadt, Germany
  • E. Effinger, A.T. Lernevall, W. Viganò, C. Zamantzas
    CERN, Meyrin, Switzerland
 
  The European Spallation Source (ESS), currently under construction in Lund, Sweden, will be a pulsed neutron source based on a proton linac. The ESS linac is designed to deliver a 2GeV beam with peak current of 62.5mA at 14 Hz to a rotating tungsten target for neutron production. One of the most critical elements for protection of an accelerator is a Beam Loss Monitoring (BLM) system. The system is designed to protect the accelerator from beam-induced damage and unnecessary activation of the components. The main ESS BLM system is based on ionization chamber (IC) detectors. The detector was originally designed for the LHC at CERN resulting in production of 4250 monitors in 2006-2008. In 2014-2017 a new production of 830 detectors with a modified design was carried out to replenish spares for LHC and make a new series for ESS and GSI. This contribution focuses on the results from a measurement campaigns performed at the HRM (High-Radiation to Materials) facility at CERN, where detector response of the ESS type IC has been studied. The results may be of interest for other facilities, that are using existing or plan to use new generation of LHC type IC monitors as BLM detectors.  
DOI • reference for this paper ※ doi:10.18429/JACoW-IBIC2023-TUP004  
About • Received ※ 04 September 2023 — Revised ※ 08 September 2023 — Accepted ※ 16 September 2023 — Issue date ※ 21 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)