Author: Scholz, M.
Paper Title Page
WEOC03 A Simple Model to Describe Smoke Ring Shaped Beam Profile Measurements With Scintillating Screens at the European XFEL 366
 
  • G. Kube, S. Liu, A.I. Novokshonov, M. Scholz
    DESY, Hamburg, Germany
 
  Standard beam profile measurements of high-brightness electron beams based on OTR may be hampered by coherence effects. Therefore it was decided for the European XFEL to measure transverse beam profiles based on scintillating screen monitors using LYSO:Ce. While it is possible to resolve beam sizes down to a few micrometers with this scintillator, the experience during the XFEL commissioning showed that the measured emittance values were significantly larger than the expected ones. In addition, beam profiles measured at bunch charges of a few hundred pC showed a ’smoke ring’ structure. While coherent OTR emission and beam dynamical influence can be excluded, it is assumed that the profile distortions are caused by effects from the scintillator material. Following the experience in high energy physics, a simple model was developed which takes into account quenching effects of excitonic carriers inside a scintillator in a heuristic way. Based on this model, the observed beam profiles can be understood qualitatively. Together with the model description, first comparisons with experiments will be presented, and new scintillators suitable for beam profile diagnostics will be discussed.  
slides icon Slides WEOC03 [2.411 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEOC03  
About • paper received ※ 04 September 2018       paper accepted ※ 13 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPC05 The European XFEL Wire Scanner System 498
 
  • T. Lensch, S. Liu, M. Scholz
    DESY, Hamburg, Germany
 
  The European-XFEL (E-XFEL) is an X-ray Free Electron Laser facility located in Hamburg (Germany). The superconducting accelerator for up to 17.5 GeV electrons will provide photons simultaneously to several user stations. Currently 12 Wire Scanner units are used to image transverse beam profiles in the high energy sections. These scanners provide a slow scan mode which is currently used to measure beam emittance and beam halo distributions. When operating with long bunch trains (>100 bunches) also fast scans are planned to measure beam sizes in an almost nondestructive manner. Scattered electrons can be detected with regular Beam Loss Monitors (BLM) as well as dedicated wire scanner detectors. Latter are installed in different variants at certain positions in the machine. Further developments are ongoing to optimize the sensitivity of the detectors to be able to measure both, beam halo and beam cores within the same measurement with the same detector. This paper describes the current status of the system and examples of different slow scan measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2018-WEPC05  
About • paper received ※ 05 September 2018       paper accepted ※ 11 September 2018       issue date ※ 29 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)