Keyword: framework
Paper Title Other Keywords Page
TUPG45 The CERN Beam Instrumentation Group Offline Analysis Framework instrumentation, database, extraction, software 449
 
  • B. Kolad, J-J. Gras, S. Jackson, S.B. Pedersen
    CERN, Geneva, Switzerland
 
  Beam instrumentation systems at CERN require periodic verifications of both their state and condition. Presently, experts have no generic solution to observe and analyse an instrument's condition and as a result, many ad-hoc Python scripts have been developed to extract historical data from CERN's logging service. Clearly, ad-hoc developments are not desirable for medium/long term maintenance reasons and therefore a generic solution has been developed. In this paper we present the Offline Analysis Framework (OAF), used for automatic report generation based on data from the central logging service. OAF is a Java / Python based tool which allows generic analysis of any instrument's data extracted from the database. In addition to the generic analysis, advanced analysis can also be performed by providing custom Python code. This paper will explain the steps of the analysis, its scope and present the kind of reports that are generated and how instrumentation experts can benefit from it. We will also show how this approach simplifies debugging, allows code re-use and optimises database and CPU resource usage.  
poster icon Poster TUPG45 [1.623 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-TUPG45  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPG53 Unambiguous Electromagnetic Pulse Retrieval Through Frequency Mixing Interference in Frequency Resolved Optical Gating radiation, electron, laser, diagnostics 767
 
  • E.W. Snedden, S.P. Jamison, D.A. Walsh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.P. Jamison
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
 
  We demonstrate a method for full and unambiguous temporal characterization of few-cycle electromagnetic pulses, including retrieval of the carrier envelope phase (CEP), in which the interference between non-linear frequency mixing components is spectrally resolved using Frequency Resolved Optical Gating (FROG). We term this process Real-Domain FROG (ReD-FROG) and demonstrate its capabilities through the complete measurement of the temporal profile of a single-cycle THz pulse. When applied at THz frequencies ReD-FROG overcomes the bandwidth limitations relating probe and test pulses in Electro-Optic (EO) sampling. The approach can however be extended generally to any frequency range and we provide a conceptual demonstration of the CEP retrieval of few-cycle optical field.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IBIC2016-WEPG53  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)