Author: Buffat, X.
Paper Title Page
MOP07 Chromaticity Measurement Using Beam Transfer Function in High Energy Synchrotrons 46
 
  • X. Buffat, S.V. Furuseth, G. Vicentini
    CERN, Geneva, Switzerland
  • S.V. Furuseth
    EPFL, Lausanne, Switzerland
 
  Control of chromaticity is often critical to mitigate collective instabilities in high energy synchrotrons, yet classical measurement methods are of limited use during high intensity operation. We explore the possibility to extract this information from beam transfer function measurements, with the development of a theoretical background that includes the impact of wakefields and by analysis of multi-particle tracking simulations. The investigations show promising results that could improve the operation of the HL-LHC by increasing stability margins.  
video icon
        Right click on video for
Picture-in-Picture mode
or Full screen display.

At start the sound is muted!
 
poster icon Poster MOP07 [0.716 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2021-MOP07  
About • Received ※ 04 October 2021 — Revised ※ 01 November 2021 — Accepted ※ 31 March 2022 — Issued ※ 11 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAC3
Transverse Damper and Stability Diagram  
 
  • S.A. Antipov
    DESY, Hamburg, Germany
  • D. Amorim
    SOLEIL, Gif-sur-Yvette, France
  • N. Biancacci, X. Buffat, N. Mounet, E. Métral, D. Valuch
    CERN, Meyrin, Switzerland
  • A. Oeftiger
    GSI, Darmstadt, Germany
 
  Landau damping is an essential mechanism for ensuring collective beam stability in particle accelerators. Precise knowledge of the strength of Landau damping is key to making accurate predictions on beam stability for state-of-the-art high-energy colliders. We demonstrate an experimental procedure that would allow quantifying the strength of Landau damping and the limits of beam stability using an active transverse feedback as a controllable source of beam coupling impedance. In a proof-of-principle test performed at the Large Hadron Collider, stability diagrams for a range of Landau octupole strengths have been measured. In the future, the procedure could become an accurate way of measuring stability diagrams throughout the machine cycle.  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)