Author: Rubin, A.
Paper Title Page
WEA2WB02 Recent Studies of Beam Physics for Ion Linacs 200
 
  • L. Groening, S. Appel, X. Du, P. Gerhard, M.T. Maier, A. Rubin, P. Scharrer, H. Vormann, C. Xiao
    GSI, Darmstadt, Germany
  • M. Chung
    UNIST, Ulsan, Republic of Korea
  • P. Scharrer
    HIM, Mainz, Germany
  • P. Scharrer
    Mainz University, Mainz, Germany
 
  The UNIversal Linear ACcelerator (UNILAC) at GSI aims at provision of high brilliant ion beams, as it main purpose will be to serve as injector for the upcoming FAIR accelerator complex. The UNILAC injects into the subsequent synchrotron SIS18 applying horizontal multi-turn injection (MTI). Optimization of this process triggered intense theoretical and experimental studies of dynamics of transversely coupled beams. These activities comprise round-to-flat beam transformation, full 4d transverse beam diagnostics, optimization of the MTI parameters through generic algorithms, and extension of Busch's theorem to accelerated particle beams. Finally, recent advance in modeling time-transition-factors and its impact on improved linac performance will be presented as well as progress in the optimization of ion charge state stripping.  
slides icon Slides WEA2WB02 [4.772 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA2WB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP1WB03 First Heavy Ion Beam Acceleration with a Superconducting Multi Gap CH-cavity 215
 
  • W.A. Barth, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  A newly developed superconducting 15-gap RF-cavity has been successfully tested at GSI Helmholtzzentrum für Schwerionenforschung. After a short commissioning and ramp up time of some days, a Crossbar H-cavity accelerated first time heavy ion beams with full transmission up to the design beam energy of 1.85 MeV/u. The design acceleration gain of 3.5 MV inside a length of less than 70 cm has been verified with heavy ion beam of up to 1.5 particle mueA. The measured beam parameters showed excellent beam quality, while a dedicated beam dynamics layout provides beam energy variation between 1.2 and 2.2 MeV/u. The beam commissioning is a milestone of the R&D work of Helmholtz Institute Mainz and GSI in collaboration with Goethe University Frankfurt towards a superconducting heavy ion continuous wave linear accelerator cw-Linac with variable beam energy. Further linac beam dynamics layout issues will be presented as well.  
slides icon Slides WEP1WB03 [20.157 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP1WB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)