

Recent Studies of Beam Physics for Ion Linacs at GSI

L. Groening, S. Appel, X. Du, P. Gerhard, M. Maier, S. Mickat, A. Rubin, P. Scharrer , H. Vormann, C. Xiao (GSI Germany) M. Chung (UNIST Korea)

Outline

- UNILAC Introduction
- Increase of ion stripping efficiency
- Advances in longitudinal beam dyn. modeling of DTLs
- complete 4d transverse diagnostics
- Extension of Busch theorem to beams
- Generic algorithm for ring injection optimization

UNIversal Linear Accelerator UNILAC

design parameters after upgrade

ion A/q	≤ 8.5, i.e. ²³⁸ U ²⁸⁺	
beam current (pulse) * A/q	1.76 (0.5% duty cycle)	emA
input beam energy	2.2	keV/u
output beam energy	3.0 - 11.7	MeV/u
normalized total output emittance, horizontal / vertical	0.8 / 2.5	mm mrad
beam pulse duration	≤ 1000	μs
beam repetition rate	≤ 10	Hz
operating frequency	36.136 / 108.408	MHz
length	≈ 115	m

≈ 115 m 1051518 ECR IH-Cavity MUCIS 1.4 MeV/u MEVVA CHORDIS RFQ 300 keV/u (martine-RFQ IH-DTL Gas Alvarez-DTL Single Gap 120 keV/u 1.4 MeV/u 3.3 / 4.5 / 6.7 / 9.1 / 11.4 MeV/u Stripping Resonators PIG

HB2018 L. Groening / Recent Studies of Beam Physics for Ion Linacs at GSI

Increase of stripping efficiency

HB2018 L. Groeni

L. Groening / Recent Studies of Beam Physics for Ion Linacs at GSI

Increase of stripping efficiency

Longitudinal modeling of DTLs

UNILAC has two types of DTLs with different long. beam dynamics

Longitudinal modeling of DTLs

- KONUS: no stable bucket \rightarrow very sensitive to rf-voltage & phase at rf-gaps
- using pre-defined phases and/or TTF-factors may deliver less precise results (z-codes)
- using too simple approximations for E-field inside gap may deliver less precise results
- GSI developed a MATHCAD routine using:
 - gap field calculation from BEAMPATH using Fourier-Bessel series

 longitudinal tracking based on adaptive step size in dt (and hence dz) with Bulirsch-Stoer method

$$Z(t,z) := \begin{bmatrix} z \\ \frac{dz}{dt} \end{bmatrix} = \begin{bmatrix} z \\ \beta c \end{bmatrix} \qquad DZ(t,z) := \frac{dZ(t,z)}{dt} = \begin{bmatrix} \beta c \\ \frac{q}{\frac{m_0}{\sqrt{1-\beta^2}}} E_z(z)\cos(\omega t + \psi_0) \end{bmatrix}$$

Nucl. Instrum. & Meth. A 887, p.40 (2018)

Longitudinal modeling of DTLs

• new tracking method allows for understanding the "intermediate energy puzzle" at the UNILAC that rose 1983:

- last two Alvarez-cavities deliver beam with 100% transmission and very low dp/p, if they are operated at just 80 / 70 % of their nominal voltage
- energy gains are reduced by 66 / 68 % w.r.t. value at nominal voltage
- beam delivered to users since 1983 to their full satisfaction

work in progress ...

4d transverse diagnostics: Coupling & eigen-emittances

• linear (4d), Hamiltonian beam line elements preserve :

• 4d rms emittance
$$E_{4d}^2 = det \begin{bmatrix} \langle xx \rangle \langle xx' \rangle \langle xy \rangle \langle xy' \rangle \\ \langle x'x \rangle \langle x'x' \rangle \langle x'y \rangle \langle x'y' \rangle \\ \langle yx \rangle \langle yx' \rangle \langle yy \rangle \langle yy' \rangle \\ \langle y'x \rangle \langle y'x' \rangle \langle y'y \rangle \langle y'y' \rangle \end{bmatrix}$$

$$\varepsilon_1 = \frac{1}{2}\sqrt{-tr[(CJ)^2] + \sqrt{tr^2[(CJ)^2] - 16det(C)}}$$

• the two eigen-emittances

$$\varepsilon_2 = \frac{1}{2}\sqrt{-tr[(CJ)^2] - \sqrt{tr^2[(CJ)^2] - 16det(C)}}$$

$$C = \begin{bmatrix} \langle xx \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle x'x \rangle & \langle x'x' \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle yx \rangle & \langle yx' \rangle & \langle yy \rangle & \langle yy' \rangle \\ \langle y'x \rangle & \langle y'x' \rangle & \langle y'y \rangle & \langle y'y' \rangle \end{bmatrix} \qquad J := \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

9

 $E_{4d} = \varepsilon_1 \cdot \varepsilon_2$

4d transverse diagnostics: Coupling & eigen-emittances

• if, and <u>only</u> if there is no x↔y correlation, i.e.,

$$= \begin{bmatrix} \langle xx \rangle \langle xx' \rangle & 0 & 0 \\ \langle x'x \rangle \langle x'x' \rangle & 0 & 0 \\ 0 & 0 & \langle yy \rangle \langle yy' \rangle \\ 0 & 0 & \langle y'y \rangle \langle y'y' \rangle \end{bmatrix}$$

- rms emittances = eigen-emittances
- if there is any coupling
 - rms emittances \neq eigen-emittances
 - coupling parameter t $t = \frac{\varepsilon_x \varepsilon_y}{\varepsilon_1 \varepsilon_2} 1 \ge 0$
- term "eigen-emittance" is quite unknown, since generally beams are considered as uncoupled

C

• measured beam moments are reliable, only if they deliver reasonable eigen-emittances !

4d transverse diagnostics: Motivation through coupling elements

L. Groening / Recent Studies of Beam Physics for Ion Linacs at GSI

4d transverse diagnostics: Concept

- slit & grid are mounted inside a rotatable chamber
- rotation gives access to <xy>, <xy'>, <x'y>, <x'y'>
- chamber does not rotate during measurement

4d transverse diagnostics: Concept

- beam moments to be determined at "reconstruction point"
- "reconstruction point" and ROSE are separated by adjustable non-coupling elements
- slit & grid of ROSE can be rotated simultaneously

4d transverse diagnostics: Beam matrix measured

4d transverse diagnostics: Check reliability

- measurements were done for two different skew triplet settings
- both measurements were backtransformed to entrance of skew triplet
- back-transformations delivered very similar results
- the two measurements are consistent
- ROSE seems to be reliable

HB2018 L. Groening / Recent Studies of Beam Physics for Ion Linacs at GSI

Busch theorem for beams: Single particle (H. Busch 1926)

Busch theorem states

$$L_s = \left[\vec{r} \times (\vec{P} + eq\vec{A})\right] \cdot \vec{e}_s = const$$

using cylindrical coordinates :

 $x = r \cos \theta, \qquad y = r \sin \theta$ $\vec{P} = m \begin{bmatrix} \dot{x} \\ \dot{y} \\ \beta c \end{bmatrix}$

$$L_{s} = mr^{2}\dot{\theta} + \frac{1}{2}eqB_{s}r^{2} = const$$
$$L_{s} = mr^{2}\dot{\theta} + \frac{eq}{2\pi}\Psi = const$$

H. Busch, Z. Phys. **81** (5) 924 (1926)

 L_s = orbital angular momentum + flux through area of cyclotron motion = const

Busch theorem for beams: Single particle trajectories

Busch theorem can be generalized to :

P. T. Kirstein, G. S. Kino, and W. E. Waters, Space Charge Flow (McGraw-Hill, New York, 1967), p. 14

C_i enclose possible single particle trajectories

$$C_i := circles with constant r_i \rightarrow m\gamma r^2 \dot{\theta} + \frac{eq}{2\pi} \Psi = const$$

Busch theorem for beams: Reformulate preservation of eigen-emittances

"generalized" eigen-emittance through replacing (x',y') by generalized momenta

$$C = \begin{bmatrix} \langle xx \rangle \langle xy \rangle \langle xy \rangle \langle xy \rangle \langle xp_y \rangle \\ \langle x'x \rangle \langle x'x' \rangle \langle x'y \rangle \langle x'y' \rangle \\ \langle yx \rangle \langle yx \rangle \langle yy \rangle \langle yy \rangle \langle yy \rangle \rangle \\ \langle y'x \rangle \langle y'x' \rangle \langle y'y \rangle \langle y'y \rangle \langle y'y' \rangle \end{bmatrix} \longrightarrow \tilde{C} = \begin{bmatrix} \langle x^2 \rangle \langle xp_x \rangle \langle xp_x \rangle \langle xy \rangle \langle xy \rangle \langle xp_y \rangle \\ \langle xp_x \rangle \langle p_x^2 \rangle \langle yp_x \rangle \langle p_xp_y \rangle \\ \langle xp_y \rangle \langle yp_x \rangle \langle yp_y \rangle \langle yp_y \rangle \\ \langle xp_y \rangle \langle xp_y \rangle \langle yp_y \rangle \langle yp_y \rangle \langle yp_y \rangle \end{bmatrix}$$

$$J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \qquad \tilde{\varepsilon}_{1/2} = \frac{1}{2}\sqrt{-tr[(\tilde{C}J)^2] \pm \sqrt{tr^2[(\tilde{C}J)^2] - 16\det(\tilde{C})}}$$

- if $\tilde{\varepsilon}_{1/2}$ are preserved, also $\tilde{\varepsilon}_1^2 + \tilde{\varepsilon}_2^2$ must be preserved
- state $\tilde{\varepsilon}_1^2 + \tilde{\varepsilon}_2^2 = const$ using generalized momenta

$$p_{x} := x' + \frac{A_{x}}{(B\rho)} = x' - \frac{yB_{s}}{2(B\rho)}$$

$$p_{y} := y' + \frac{A_{y}}{(B\rho)} = y' + \frac{xB_{s}}{2(B\rho)}$$
to obtain expression for useful "laboratory" eigen-emittances

Busch theorem for beams

$$(\varepsilon_1 - \varepsilon_2)^2 + \left[\frac{AB_s}{(B\rho)}\right]^2 + 2\frac{B_s}{(B\rho)}\left[\langle y^2 \rangle \langle xy' \rangle - \langle x^2 \rangle \langle yx' \rangle + \langle xy \rangle (\langle xx' \rangle - \langle yy' \rangle)\right] = const$$

- sum of three quantities forms an invariant
- difference of eigen-emittances, flux through beam area,
- what is the third ?
 - has dimension m³
 - scales with beam rms area as for y = ax it vanishes
 - vanishes for uncorrelated beams
 - invariant under rotation around beam axis
 - it turns out to be the beam's vorticity multiplied by the beam area

Busch theorem for beams

original Busch theorem for single particle :

$$\oint_C \vec{v} \cdot d\vec{C} + \frac{eq}{m\gamma}\psi = const$$

theorem extended to accelerated particle beams :

$$(\varepsilon_{n1} - \varepsilon_{n2})^2 + \frac{4eq\psi\beta\gamma}{mc\pi} \oint_C \vec{r'} \cdot d\vec{C} + \left[\frac{eq\psi}{mc\pi}\right]^2 = const$$

- both expressions include flux and <u>"vorticity</u>" $\vec{v} \cdot d\vec{C} \simeq (\vec{\nabla} \times \vec{v}) d\vec{A}$ (Stoke's law)
- the extended theorem additionally includes eigen-emittances
- theorem allows very fast modeling of setups for emittance gymnastics

Phys. Rev. Accel. Beams 20 014201 (2018)

Busch theorem for beams: Application to emittance shaping (EMTEX)

Optimization of multi-turn injection

	many injection parameters to be optimi	<u>zed</u> :
• • • •	position of incoming beam at septum initial distortion from bumper bump decreasing rate # turns to be injected hor. tune hor. emittance from linac	x _s , x' _s x _b T n Q _x ε _x
	target of optimization:	
•	maximum current after injection minimum integrated losses emittance (brilliance) from linac	

Optimization of multi-turn injection: Generic algorithm

• create about 150 random sets of parameters (parents = generation #1)

- check all parents for their fitness w.r.t. target of optimization
- pick best 100 parents and create about 50 children (gen. #2) from:
 - mutation of one parent (vary each parameter by some percent)
 - combination of parameters from two parents
- check all 50 children + 100 parents for their fitness
- pick best 100 from this pool and create 50 children (gen. #3) from:
 - mutation of one parent (vary each parameter by some percent)
 - combination of parameters from two parents
- check all 50 children + 100 parents for their fitness ...

Optimization of multi-turn injection: Generic algorithm

HB2018 L. Groening / Recent Studies of Beam Physics for Ion Linacs at GSI

- Ion stripping efficiency increases by 50% using pulsed H_2 jet
- Advanced longitudinal beam dyn. modeling of DTLs explains UNILAC 's "intermediateenergy puzzle"
- Demonstration of complete 4d transverse diagnostics at ions with E $\gtrsim 150~keV/u$
- Fast modeling of emittance gymnastics by extending Busch theorem to beams
- Generic algorithm increases efficiency of multi-turn injection into rings