Author: Reid, J.
Paper Title Page
WEP2PO010 Fermilab - The Proton Improvement Plan (PIP) 287
 
  • F.G. Garcia, S. Chaurize, C.C. Drennan, K. E. Gollwitzer, V.A. Lebedev, W. Pellico, J. Reid, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
 
  The Fermilab Proton Source is composed of three machines: an injector line, a normal conducting Linac and a Booster synchrotron. The proton improvement plan was proposed in 2012 to address the necessary accelerator upgrades and hardware modification to allow an increase in proton throughput, while maintaining acceptable activation levels, ensuring viable operation of the proton source to sustain the laboratory HEP program. A summary of work performed and respective results will be presented.  
poster icon Poster WEP2PO010 [1.699 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP2WC01 The FNAL Booster Second Harmonic RF Cavity 434
 
  • R.L. Madrak, J.E. Dey, K.L. Duel, M.R. Kufer, J. Kuharik, A.V. Makarov, R.D. Padilla, W. Pellico, J. Reid, G.V. Romanov, M. Slabaugh, D. Sun, C.-Y. Tan, I. Terechkine
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy.
A second harmonic RF cavity which uses perpendicularly biased garnet for frequency tuning is currently being constructed for use in the Fermilab Booster. The cavity will operate at twice the fundamental RF frequency, from ~76 - 106 MHz, and will be turned on only during injection, and transition or extraction. Its main purpose is to reduce beam loss as required by Fermilab's Proton Improvement Plan (PIP). After three years of optimization and study, the cavity design has been finalized and all constituent parts have been received. We discuss the design aspects of the cavity and its associated systems, component testing, and status of the cavity construction.
 
slides icon Slides THP2WC01 [16.734 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THP2WC01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)