Author: Migliorati, M.
Paper Title Page
TUP2WE04 Design of the Target Dump Injection Segmented (TDIS) in the Framework of the High Luminosity Large Hadron Collider (HL-LHC) Project 122
 
  • L. Teofili, D. Carbajo Perez, I. Lamas Garcia, M. Migliorati, A. Perillo
    CERN, Geneva, Switzerland
  • M. Migliorati
    INFN-Roma1, Rome, Italy
  • M. Migliorati
    Sapienza University of Rome, Rome, Italy
 
  The High Luminosity Large Hadron Collider (HL-LHC) Project at CERN calls for increasing beam brightness and intensity. In this scenario most equipment has to be redesigned and rebuilt. In particular, beam intercepting devices (as dumps, collimators, absorbers and scrapers) have to withstand impact or scraping of the new intense HL-LHC beams without failures. Further, minimizing the electromagnetic beam-device interactions is also a key design driver since they can lead to beam instabilities and excessive thermo-mechanical loading of devices. In this context, the present study assesses the conceptual design quality of the new LHC injection dump, the Target Dump Injection Segmented (TDIS), from an electromagnetic and thermo-mechanical perspective. This contribution analyzes the thermo-mechanical response of the device considering two cases: an accidental beam impact scenario and another accidental scenario with complete failure of the RF-contacts. Further, this paper presents the preliminary results for the simulation of the energy deposited by the two counter-rotating beams circulating in the device.  
slides icon Slides TUP2WE04 [10.895 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-TUP2WE04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2WA01 High Intensity Effects of Fixed Target Beams in the CERN Injector Complex 237
 
  • E. Koukovini-Platia, H. Bartosik, M. Migliorati, G. Rumolo
    CERN, Geneva, Switzerland
  • M. Migliorati
    INFN-Roma1, Rome, Italy
  • M. Migliorati
    Sapienza University of Rome, Rome, Italy
 
  The current fixed target (FT) experiments at CERN are a complementary approach to the Large Hadron Collider (LHC) and play a crucial role in the investigation of fundamental questions in particle physics. Within the scope of the LHC Injectors Upgrade (LIU), aiming to improve the LHC beam production, the injector complex will be significantly upgraded during the second Long Shutdown (LS2). All non-LHC beams are expected to benefit from these upgrades. In this paper, we focus on the studies of the transverse instability in the Proton Synchrotron (PS), currently limiting the intensity of Time-Of-Flight (ToF) type beams, as well as the prediction of the impact of envisaged hardware modifications. A first discussion on the effect of space charge on the observed instability is also being presented.  
slides icon Slides WEA2WA01 [2.483 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA2WA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)