Author: Giovannozzi, M.
Paper Title Page
WEA1WA02 Approaching the High-Intensity Frontier Using the Multi-Turn Extraction at the CERN Proton Synchrotron 231
 
  • A. Huschauer, H. Bartosik, S. Cettour-Cave, M. R. Coly, D.G. Cotte, H. Damerau, G.P. Di Giovanni, S.S. Gilardoni, M. Giovannozzi, V. Kain, E. Koukovini-Platia, B. Mikulec, G. Sterbini, F. Tecker
    CERN, Geneva, Switzerland
 
  Complementary to the physics research at the LHC, several fixed target facilities receive beams from the LHC injector complex. In the scope of the fixed target physics program at the Super Proton Synchrotron, high-intensity proton beams from the Proton Synchrotron are extracted using the Multi-Turn Extraction scheme, which is based on particle trapping in stable islands of the horizontal phase space. Considering the number of protons requested by future experimental fixed target facilities, such as the Search for Hidden Particles experiment, the currently operationally delivered beam intensities are insufficient. Therefore, experimental studies have been conducted to optimize the Multi-Turn Extraction technique and to exploit the possible intensity reach. The results of these studies along with the operational performance of high-intensity beams during the 2017 run are presented in this paper. Furthermore, the impact of the hardware changes pursued in the framework of the LHC Injectors Upgrade project on the high-intensity beam properties is briefly mentioned.  
slides icon Slides WEA1WA02 [25.566 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEA1WA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PO002 Scaling Laws for the Time Dependence of Luminosity in Hadron Circular Accelerators based on Simple Models of Dynamic Aperture Evolution 260
 
  • F.F. Van der Veken, M. Giovannozzi
    CERN, Geneva, Switzerland
 
  In recent years, models for the time-evolution of the dynamic aperture have been proposed and applied to the analysis of non-linear betatronic motion in circular accelerators. In this paper, these models are used to derive scaling laws for the luminosity evolution and are applied to the analysis of the data collected during the LHC physics runs. An extended set of fills from the LHC proton physics has been analysed and the results presented and discussed in detail. The long-term goal of these studies is to improve the estimate of the performance reach of the HL-LHC.  
poster icon Poster WEP2PO002 [5.757 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP2PO002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)