Author: Chauvin, N.
Paper Title Page
THP1WB01 Commissioning Status of Linear IFMIF Prototype Accelerator (LIPAc) 366
 
  • A. Kasugai, T. Akagi, T. Ebisawa, Y. Hirata, R. Ichimiya, K. Kondo, S. Maebara, K. Sakamoto, T. Shinya, M. Sugimoto
    QST, Aomori, Japan
  • P. Abbon, N. Bazin, B. Bolzon, N. Chauvin, S. Chel, R. Gobin, J. Marroncle, B. Renard
    CEA/DSM/IRFU, France
  • L. Antoniazzi, L. Bellan, D. Bortolato, M. Comunian, E. Fagotti, F. Grespan, M. Montis, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P.-Y. Beauvais, H. Dzitko, D. Gex, A. Jokinen, G. Phillips
    F4E, Germany
  • P. Cara, R. Heidinger, I. Moya
    Fusion for Energy, Garching, Germany
  • D. Jiménez-Rey, I. Kirpitchev, J. Mollá, P. Méndez, I. Podadera, D. Regidor, M. Weber, C. de la Morena
    CIEMAT, Madrid, Spain
  • J. Knaster, A. Marqueta, G. Pruneri, F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
 
  The IFMIF project aiming at material tests for a future fusion DEMO reactor is under the EVEDA phase in the BA Agreement of fusion program between Japan and EU. As the accelerator activity, the installation and commissioning of the Linear IFMIF Prototype Accelerator (LIPAc) is at the second stage of demonstration of the feasibility of the low energy section of an IFMIF deuteron accelerator up to 9 MeV with a beam current of 125 mA, CW. The installation of injector, RFQ, MEBT, D-Plate and LPBD for LIPAc with 8 coaxial high-power transmission lines and RF power system was just done in 2017 at Rokkasho, Japan. After that, the RF conditioning of RFQ for beam commissioning is underway. The beam commissioning of RFQ with H+/D+ and the acceleration demonstration up to 5 MeV-125 mA-0.1% duty cycle with D+ will be done.  
slides icon Slides THP1WB01 [13.177 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THP1WB01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA1WB02
Characterization of High Intensity Beams in Linacs  
 
  • P.A.P. Nghiem, N. Chauvin
    CEA/IRFU, Gif-sur-Yvette, France
  • L. Ducrot
    CEA/DSM/IRFU, France
  • W. Simeoni
    IF-UFRGS, Porto Alegre, Brazil
  • D. Uriot
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
  • M. Valette
    CERN, Geneva, Switzerland
 
  For high intensity linacs, beam particle distributions are in most cases far from Gaussian ones. Furthermore, the distribution shapes drastically differ from a linac to another and significantly change along a given linac. For those reasons, classical RMS parameters like beam envelope or emittance are no longer enough for characterizing the beam as soon as comparison or evolution of beam quality is in view. This paper presents three alternative ways to characterize more suitably a high intensity beam: 6D coordinates of the actual number of particles, projections of the distribution onto a few axes, RMS parameters of the core and of the halo separately. The advantages and drawbacks of each method are then discussed in terms of beam representativeness, data weight and physics insight.  
slides icon Slides WEA1WB02 [17.204 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP1WB02 Beam Dynamics Simulation and Measurements for the IFMIF/EVEDA Project 210
 
  • M. Comunian, L. Antoniazzi, A. Baldo, C. Baltador, L. Bellan, D. Bortolato, M. Cavenago, E. Fagotti, M.G. Giacchini, F. Grespan, M. Montis, A. Palmieri, A. Pisent, F. Scantamburlo
    INFN/LNL, Legnaro (PD), Italy
  • L. Bellan
    Univ. degli Studi di Padova, Padova, Italy
  • N. Chauvin
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
  • H. Dzitko
    F4E, Germany
 
  In the framework of IFMIF/EVEDA project the source and RFQ are ready to be tested with beam. In this article the beam dynamics simulation and the measurement performed in preparation of the first beam injection are presented. The installed line is composed by the proton and deuteron Source with the LEBT composed of two solenoids that inject in the 10 meters long RFQ, the MEBT, diagnostic plate and the beam dump. The line is prepared to be tested with protons of 8 mA in pulsed mode (up to 0.1%).  
slides icon Slides WEP1WB02 [10.303 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-WEP1WB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP1WB02
Beam Dynamics in Low Energy Beam Lines with Space Charge Compensation  
 
  • N. Chauvin, N. Pichoff, D. Uriot
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
  • A. Chancé
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • F. Gérardin
    CEA/IRFU, Gif-sur-Yvette, France
 
  The study of the dynamics of low energy beam transport (LEBT) line is one of the major challenges in the high intensity hadron accelerators field. At low energy, the beam transport is dominated by the charge space field which in many cases can induce a halo formation, emittance growth and eventually beam losses. Moreover, beam dynamics in LEBT features a unique specificity: space charge compensation induced by ionisation of the residual gas by the propagating beam. In order to attempt to reach a better understanding of space charge compensation and particles dynamics in LEBTs, extensive numerical simulations using the PIC code Warp have been performed. Simulation results for light ions beams propagating in the LEBT of the IFMIF-LIPAc and MYRRHA accelerator will be presented and compared to experimental results.  
slides icon Slides THP1WB02 [6.063 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1WE04 ESS nBLM: Beam Loss Monitors based on Fast Neutron Detection 404
 
  • T. Papaevangelou
    CEA/IRFU, Gif-sur-Yvette, France
  • H. Alves, S. Aune, J. Beltramelli, Q. Bertrand, T. Bey, B. Bolzon, N. Chauvin, M. Combet, D. Desforge, M. Desmons, Y. Gauthier, E. Giner-Demange, A. Gomes, F. Gougnaud, F. Harrault, F. J. Iguaz Gutierrez, T.J. Joannem, M. Kebbiri, C. Lahonde-Hamdoun, P. Le Bourlout, Ph. Legou, O. Maillard, A. Marcel, C. Marchand, Y. Mariette, J. Marroncle, V. Nadot, M. Oublaid, G. Perreu, O. Piquet, B. Pottin, Y. Sauce, J. Schwindling, L. Segui, F. Senée, R. Touzery, G. Tsiledakis, O. Tuske, D. Uriot
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
  • I. Dolenc Kittelmann, R.J. Hall-Wilton, C. Höglund, L. Robinson, T.J. Shea, P. Svensson
    ESS, Lund, Sweden
  • V. Gressier
    IRSN, Saint-Paul-Lez-Durance, France
  • K. Nikolopoulos
    Birmingham University, Birmingham, United Kingdom
  • M. Pomorski
    CEA/DRT/LIST, Gif-sur-Yvette Cedex, France
 
  A new type of Beam Loss Monitor (BLM) system is being developed for use in the European Spallation Source (ESS) linac, primarily aiming to cover the low energy part (proton energies between 3-100 MeV). In this region of the linac, typical BLM detectors based on charged particle detection (i.e. Ionization Cham-bers) are not appropriate because the expected particle fields will be dominated by neutrons and photons. Another issue is the photon background due to the RF cavities, which is mainly due to field emission from the electrons from the cavity walls, resulting in brems-strahlung photons. The idea for the ESS neutron sensi-tive BLM system (ESS nBLM) is to use Micromegas detectors specially designed to be sensitive to fast neutrons and insensitive to low energy photons (X and gammas). In addition, the detectors must be insensitive to thermal neutrons, because those neutrons may not be directly correlated to beam losses. The appropriate configuration of the Micromegas operating conditions will allow excellent timing, intrinsic photon back-ground suppression and individual neutron counting, extending thus the dynamic range to very low particle fluxes.  
slides icon Slides THA1WE04 [3.267 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-HB2018-THA1WE04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)