Beam Dynamics in Low Energy Beam Lines with Space Charge Compensation

HB 2018, Daejeon, Korea.

N. Chauvin^{*}, F. Gérardin, A. Chancé, N. Pichoff, D. Uriot

*Nicolas.Chauvin@cea.fr

CEA, IRFU, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.

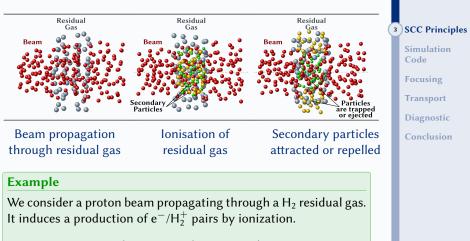
June 21, 2018

Overview

- **1** Space Charge Compensation Basic Principles
- 2 Simulation Code
- Beam Focusing in a LEBT
- Beam transport in a LEBT
- **5** Interceptive Diagnostic Simulation
- **6** Conclusion and Perspectives

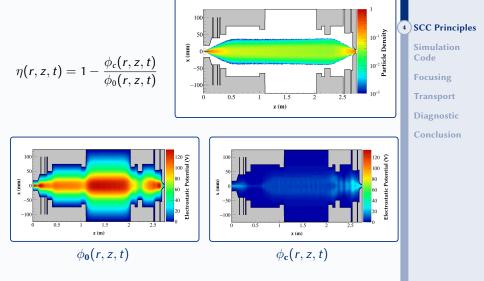
SCC Principles Simulation Code Focusing Transport Diagnostic Conclusion

Overview


1 Space Charge Compensation Basic Principles

- 2 Simulation Code
- **Beam Focusing in a LEBT**
- Beam transport in a LEBT
- Interceptive Diagnostic Simulation
- **6** Conclusion and Perspectives

SCC Principles Simulation Code Focusing Transport Diagnostic Conclusion


2

Space Charge Compensation (SCC)

$$H^+ + H_2 \rightarrow H^+ + e^- + H_2^+$$

Space Charge Compensation Degree

Isp

Space Charge Compensation Degree

$$\eta(r, z, t) = 1 - \frac{\phi_c(r, z, t)}{\phi_0(r, z, t)}$$

$$\int_{-\frac{10}{0}}^{\frac{10}{0}} \int_{-\frac{10}{0}}^{\frac{10}{0}} \int_{-\frac{10}{0}}^{\frac{10}$$

Space Charge Compensation Transient Time

The characteristic **space charge compensation transient time**, T_{SSC} , can be approached by considering the time it takes for a particle of the beam to produce a neutralizing particle on the residual gas.It can be approached by:

$$T_{SCC} = \frac{1}{\sigma_i(E)n_g v_f}$$

with

 $\sigma_i(E)$ ionisation cross section of gas v_B beam velocity n_g gas density

Example

100 keV H⁺ beam with H₂ gas of 10^{-5} mbar: $T_{SCC} = 49 \ \mu s$

Simulation Code Focusing Transport Diagnostic Conclusion

SCC Principles

6)

Space Charge Compensation Transient Time

The characteristic **space charge compensation transient time**, T_{SSC} , can be approached by considering the time it takes for a particle of the beam to produce a neutralizing particle on the residual gas.It can be approached by:

$$T_{SCC} = \frac{1}{\sigma_i(E)n_g v_f}$$

with

 $\sigma_i(E)$ ionisation cross section of gas v_B beam velocity n_g gas density

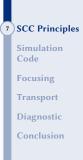
Example

100 keV H⁺ beam with H₂ gas of 10^{-5} mbar: $T_{SCC} = 49 \ \mu s$

But in a LEBT, electrons can be produced by other physical processes...

6) SCC Principles Simulation Code Focusing Transport Diagnostic Conclusion Interactions induced by primary beam

- $\bullet~$ lonisation of gas: ${\rm H}^+ + {\rm A} \rightarrow {\rm H}^+ + {\rm A}^+ + e^-$
- $\bullet~$ Charge exchange with gas: ${\rm H^+} + {\rm A} \rightarrow {\rm H} + {\rm A^+}$
- $\bullet\,$ Secondary electron emission on a metallic surface: $H^+ + \textit{Metal} \rightarrow e^-$



Interactions induced by primary beam

- $\bullet~$ lonisation of gas: ${\rm H}^+ + {\rm A} \rightarrow {\rm H}^+ + {\rm A}^+ + e^-$
- $\bullet~$ Charge exchange with gas: ${\rm H^+} + {\rm A} \rightarrow {\rm H} + {\rm A^+}$
- $\bullet\,$ Secondary electron emission on a metallic surface: $H^+ + \textit{Metal} \rightarrow e^-$

Interactions induced by electrons

- Ionisation of gas: $e^- + A \rightarrow A^+ + 2e^-$
- $\bullet\,$ Dissociation reaction: $e^- + A_2 \rightarrow A^+ + A + 2e^-$

Interactions induced by primary beam

- $\bullet~$ lonisation of gas: ${\rm H}^+ + {\rm A} \rightarrow {\rm H}^+ + {\rm A}^+ + e^-$
- $\bullet~$ Charge exchange with gas: ${\rm H^+} + {\rm A} \rightarrow {\rm H} + {\rm A^+}$
- $\bullet\,$ Secondary electron emission on a metallic surface: $H^+ + \textit{Metal} \rightarrow e^-$

Interactions induced by electrons

- Ionisation of gas: $e^- + A \rightarrow A^+ + 2e^-$
- $\bullet\,$ Dissociation reaction: $e^- + A_2 \rightarrow A^+ + A + 2e^-$

Interactions induced by secondary ions

- Ionisation of gas: $A^+ + A \rightarrow 2A^+e^-$
- Charge exchange with gas: $A^+ + A \rightarrow A + A^+$

Interactions to be neglected

- Interactions with too low cross section
- Interactions that have no effect on SCC (ex: charge exchange of secondary ions)

Interactions to be neglected

- Interactions with too low cross section
- Interactions that have no effect on SCC (ex: charge exchange of secondary ions)

Interactions to be considered in the simulations

- Gas ionisation by primary beam
- Secondary electron emission
- Charge exchange of primary beam
- Gas ionisation by electrons

SCC Principles Simulation Code Focusing Transport Diagnostic

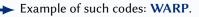
8

Conclusion

Overview

1 Space Charge Compensation Basic Principles

2 Simulation Code


- **3** Beam Focusing in a LEBT
- Beam transport in a LEBT
- Interceptive Diagnostic Simulation
- **6** Conclusion and Perspectives

SCC Principles
Simulation
Code
Focusing
Transport
Diagnostic
Conclusion

9

Transport with SCC

- Tracking particle codes (Tracks, Parmilla, Trace3D, TraceWin ...) are used with a **constant space charge compensation degree** along the beam line (or empirically dependent of z).
- High intensity ion beams at low energy: a correct description the space charge compensation is necessary.
- Use of a **self-consistent** code that simulate the beam interactions with the gas (ionization, neutralization ...) and the beam line elements (secondary emission). The dynamics of main beam is calculated **as well as the dynamics of the secondary particles**.

J.-L. Vay, D. P. Grote, R. H. Cohen, and A. Friedman. Novel methods in the Particle-In-Cell accelerator Code-Framework Warp. Computational Science & Discovery 5, 2012.

¹⁰ Simulation Code

> Focusing Transport Diagnostic Conclusion

WARP, a PIC code for SCC simulations **Code Inputs SCC Principles** Beam distributions 11 Simulation Pressure and gas species in the beam line Code • Beam line geometry Focusing • External fields maps (solenoids, source extraction, RFQ cone Transport injection trap...) Diagnostic

Conclusion

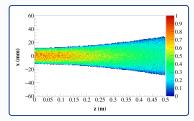
Boundary conditions

Code Outputs

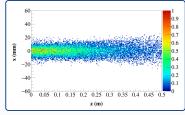
- 6D coordinates of all particle in the beam line (gas, electron, ions)
- Space charge potential map \rightarrow compute the space charge electric field map and $\eta(r, z, t)$

A Basic Example: Beam Propagation in a Drift with SCC Space Charge Compensation 101

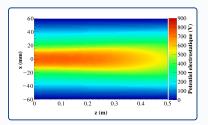
Let's consider


- Proton beam
- Beam intensity: 100 mA
- Uniform input beam distribution
- A drift space of 500 mm length
- Beam pipe of 60 mm radius
- Gas pressure (H₂) of 10^{-4} mbar (T_{SSC} = 4.9 µs)
- Only gas ionisation by the beam

¹² Simulation Code Focusing Transport Diagnostic Conclusion

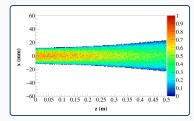

SCC Principles

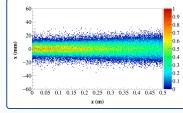
Beam Propagation in a Drift with SCC Particle Distribution and Potential - t=0.5 µs



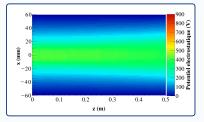
Proton distribution at $t = 0.5 \,\mu s$

Electron distribution at = $0.5 \,\mu s$


Electrostatic potential at t = $0.5 \,\mu s$

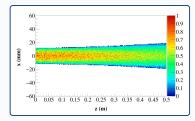

Beam Propagation in a Drift with SCC Particle Distribution and Potential - t=2.5 µs

SCC Principles

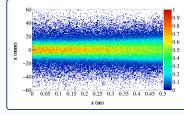


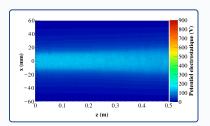
Proton distribution at $t = 2.5 \,\mu s$

Electron distribution at = $2.5 \,\mu s$



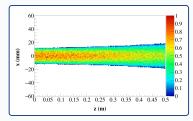
Electrostatic potential at t = $2.5 \,\mu s$


Beam Propagation in a Drift with SCC Particle Distribution and Potential – $t=5 \mu s$

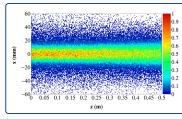

SCC Principles

Proton distribution at $t = 5 \,\mu s$

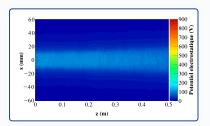
Electron distribution at = $5 \mu s$



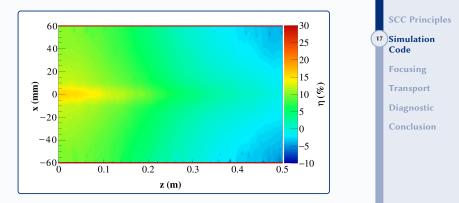
Electrostatic potential at t = $5 \,\mu s$


15 Simulation Code Focusing Transport Diagnostic Conclusion

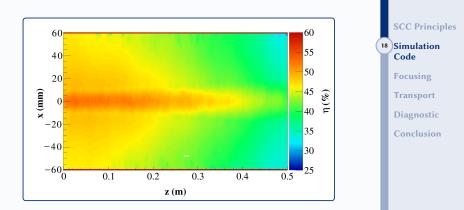
Beam Propagation in a Drift with SCC Particle Distribution and Potential - t=10 µs




Proton distribution at $t = 10 \,\mu s$

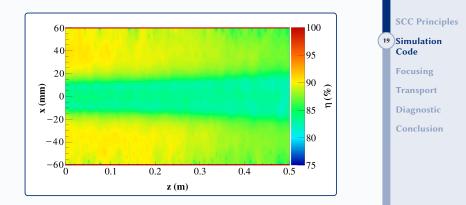

Electron distribution at = $10 \,\mu s$

Electrostatic potential at t = $10 \,\mu s$



Beam Propagation in a Drift with SCC Space Charge Compensation - 0.5 μs

Space charge compensation map at $t = 0.5 \,\mu s$


Beam Propagation in a Drift with SCC Space Charge Compensation - 2.5 µs

Istu

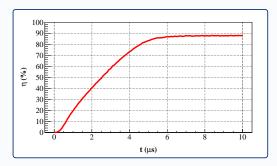
Space charge compensation map at $t = 2.5 \,\mu s$

Beam Propagation in a Drift with SCC Space Charge Compensation - 5 µs



Istu

Space charge compensation map at $t = 5 \mu s$


Beam Propagation in a Drift with SCC

Istu

Space charge compensation map at $t = 10 \,\mu s$

Beam Propagation in a Drift with SCC Determining eta and transient time

One gets for the SCC transient time

$$T=5.2\,\mu s>T_{SCC}$$

An the space charge compensation degree

$$\eta = 88\%$$

Quite low space charge compensation !?!

SCC Principles ²¹ Simulation Code Focusing Transport Diagnostic Conclusion

Limits of the PIC Codes

Cause of the partial compensation

- "Numerical heating" of the electrons
- Electrons are leaving the beam

D. Noll, M. Droba, O. Meusel, U. Ratzinger and K. Schulte. *Simulation of space-charge compensation of low-energy proton beam in a drift section.* Proceedings of HB 2016, Malm, Sweden, WEPM8Y01, 2016.

SCC Principles

22 Simulation Code

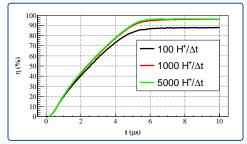
Focusing

Transport

Diagnostic

Conclusion

Limits of the PIC Codes


Cause of the partial compensation

- "Numerical heating" of the electrons
- Electrons are leaving the beam

D. Noll, M. Droba, O. Meusel, U. Ratzinger and K. Schulte. Simulation of space-charge compensation of low-energy proton beam in a drift section. Proceedings of HB 2016, Malm, Sweden, WEPM8Y01, 2016.

To mitigate this bias: increase the number of macro-particle in the simulation domain (and $\Delta x \approx \lambda_D$).

$$\eta = 96\%$$

SCC Principles

22 Simulation Code

Focusing

Transport

Diagnostic

Conclusion

Overview

- **1** Space Charge Compensation Basic Principles
- 2 Simulation Code
- Beam Focusing in a LEBT
- Beam transport in a LEBT
- Interceptive Diagnostic Simulation
- Conclusion and Perspectives

22) Focusing Transport Diagnostic Conclusion

Beam Focusing in a LEBT

Purposes of a LEBT

- Transport the beam from the ion source to the RFQ
- Match the beam to optimize its injection into the RFQ
- Minimize emittance growth and beam losses

Beam Focusing

- Magnetic or electrostatic focusing
- Cylindrical symmetry or quadripolar focusing
- "Weak" or "strong" focusing

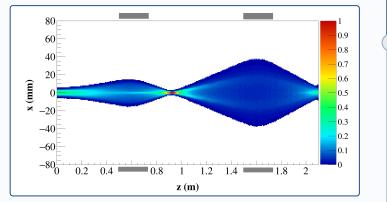
Beam transport simulations with different focusing elements under space charge compensation regime

Simulation Conditions

Focusing Elements in the Simulated Beam Line

- 2 Solenoids
- 2 Quadrupole doublets
- 2 Einzel Lenses

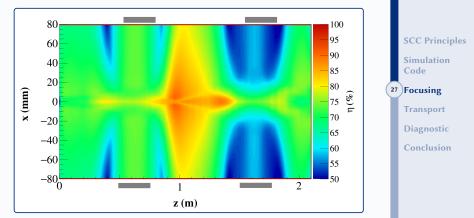
Common Simulation Parameters


- Proton beam @ 100 keV
- Beam intensity: 50 mA
- Beam distribution: Gaussian, cylindrical symmetry
- Beam line length: 2.1 m
- H_2 gas, pressure: 1×10^{-4} mbar
- $\bullet~$ Considered reaction: $H^+ + H_2 \rightarrow H^+ + H_2^+ + e^-$

SCC Principles Simulation Code Focusing Transport Diagnostic Conclusion

25

"Strong Focusing": beam waist between the two solenoids


Beam density through the LEBT at SCC steady state

26) Focusing Transport Diagnostic Conclusion

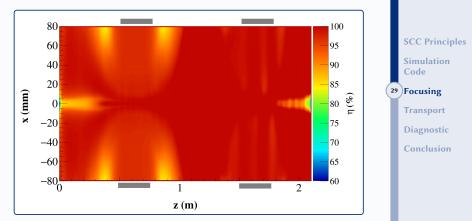
Solenoid Focusing

SCC in z0x plane at steady state

$$\varepsilon_{{
m x},{
m f}}=6\,arepsilon_{{
m x},{
m i}}$$

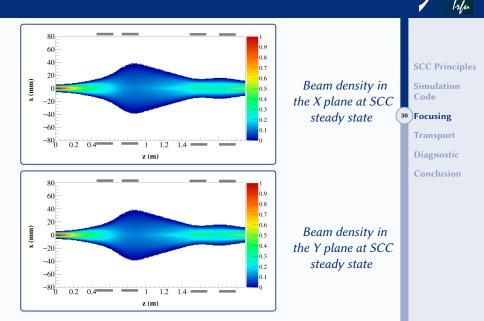
"Weak focusing": no beam waist between the two solenoids

80 0.9 60 0.8 40 0.7 20 0.6 x (mm) 0.5 0 0.4-200.3 -400.2 -600.1-80 1.2 0.2 0.8 0.4 1.4 1.8 2 z (m)

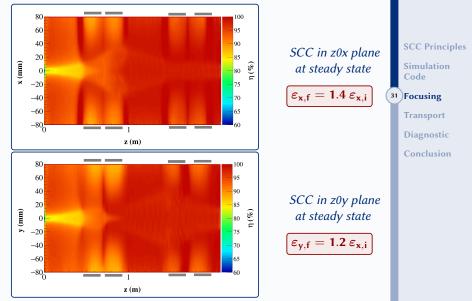

Beam density through the LEBT at SCC steady state

Simulation Code 28 Focusing Transport Diagnostic Conclusion

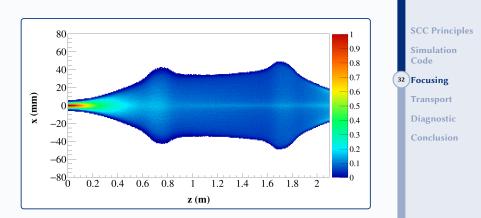
Solenoid Focusing



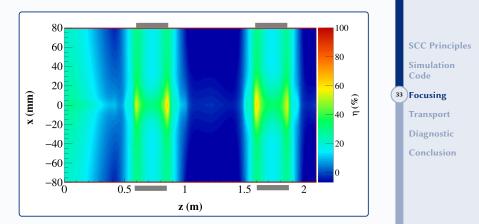
SCC in z0x plane at steady state


$$arepsilon_{{f x},{f f}}=1.3\,arepsilon_{{f x},{f i}}$$

Quadrupole Doublet Focusing


Solenoid Focusing Weak Focusing

Einzel Lens Focusing



Beam density through the LEBT at SCC steady state

Einzel Lens Focusing

SCC in z0x plane at steady state

$$\varepsilon_{\mathbf{x},\mathbf{f}} = 7.6 \, \varepsilon_{\mathbf{x},\mathbf{i}}$$

Favourable Focusing

- Weak magnetic focusing with solenoid is well adapted to LEBT with SCC (like ESS, IFMIF, MYRRHA...).
- Quadrupole focusing is satisfactory.
- Quadrupole doublet may be an promising alternative to solenoids in LEBT and may be useful to finely adapt the beam injection into the RFQ.

Transport

34

Diagnostic

Conclusion

Favourable Focusing

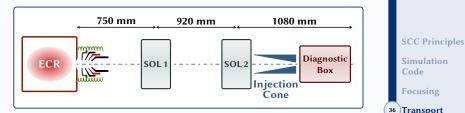
- Weak magnetic focusing with solenoid is well adapted to LEBT with SCC (like ESS, IFMIF, MYRRHA...).
- Quadrupole focusing is satisfactory.
- Quadrupole doublet may be an promising alternative to solenoids in LEBT and may be useful to finely adapt the beam injection into the RFQ.

Unfavourable focusing

- With Einzel lens, weak compensation because of a lack of electrons (secondary ions may be focused locally).

SCC Principles

Overview



- **1** Space Charge Compensation Basic Principles
- 2 Simulation Code
- **Beam Focusing in a LEBT**
- Beam transport in a LEBT
- Interceptive Diagnostic Simulation
- **6** Conclusion and Perspectives

Beam Transport Simulation in a LEBT

Simulation Conditions (IFMIF/LIPAc LEBT)

- Deuteron beam @ 100 keV
- Beam intensity: 135 mA
- Input beam distribution: ion source extraction system simulated with Axcel
- Pressure profile in the beam line (D₂ and Kr)

GOAL: Study the effects of the different interactions on the beam transport

Beam Transport Simulation in a LEBT

Simulation #1: only gas ionisation by the beam

•
$$D^+ + D_2 \rightarrow D^+ + D_2^+ + e^-$$

•
$$D^+ + Kr \rightarrow D^+ + Kr^+ + e^-$$

Simulation #2: other collisions are considered

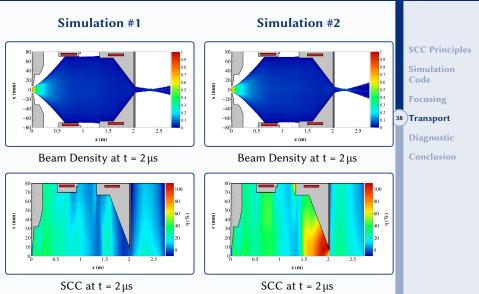
•
$$D^+ + D_2 \rightarrow D^+ + D_2^+ + e^-$$

•
$$D^+ + Kr \rightarrow D^+ + Kr^+ + e^-$$

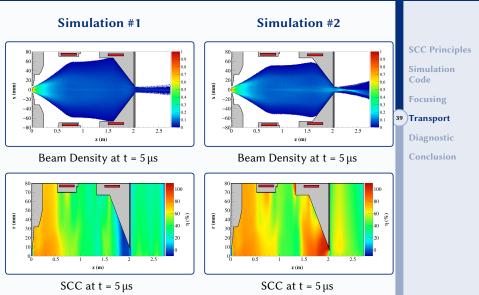
• $D^+ + Metal \rightarrow e^-$

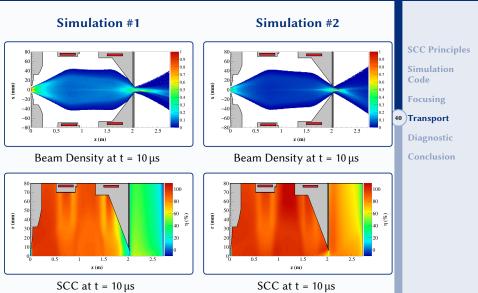
•
$$e^- + D_2 \to e^- + D_2^+ + e^-$$

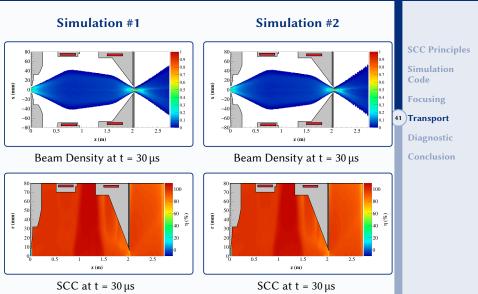
- $e^- + Kr \rightarrow e^- + Kr^+ + e^-$
- $D^+ + D_2 \rightarrow D + D_2^+$
- $D^+ + Kr \rightarrow D + Kr^+$

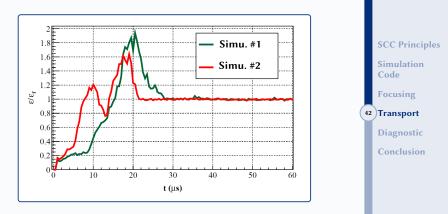


SCC Principles


Simulation Results at t = 2 µs


Simulation Results at t = 5 µs


Simulation Results at t = 10 µs



Simulation Results at t = 30 µs

Beam Transport Simulation in a LEBT Summary

- Same emittance value at steady state in both case
- Shorter SCC transient time for simulation #2 ($T_1 = 30 \,\mu s T_2 = 22 \,\mu s$)
- Beam losses by charge exchange: 4%

Overview

- **1** Space Charge Compensation Basic Principles
- 2 Simulation Code
- Beam Focusing in a LEBT
- Beam transport in a LEBT
- **5** Interceptive Diagnostic Simulation
 - **6** Conclusion and Perspectives

SCC Principles Simulation Code Focusing Transport 3 Diagnostic Conclusion

Interceptive Diagnostic Simulation

Insertion of an emittancemeter

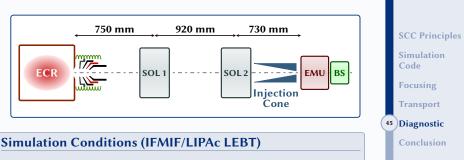
Emittance Measurement Unit (IFMIF/LIPAc LEBT)

- Alisson scanner
- Thermal screen made of W tungsten tiles (brazed on Cu)
- Entrance slit of 0.1 mm that selects a beamlet to analyse
- W screen intercept the beam during the measurement

GOAL: Study the effect of the insertion of such a device on the beam space charge compensation

SCC Principles Simulation Code Focusing Transport Diagnostic Conclusion

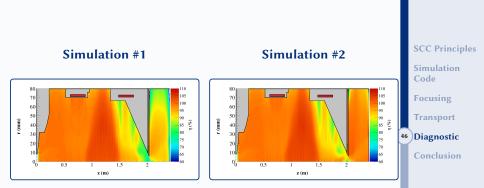
44



SCC Principles Simulation Code Focusing Transport 45 Diagnostic

Conclusion

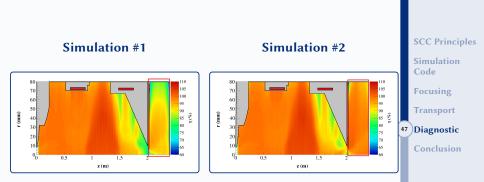
Interceptive Diagnostic Simulation



- Deuteron beam @ 100 keV
- Beam intensity: 135 mA
- EMU is simply modelled by a W plate at $z_E = 2.4 \text{ m}$

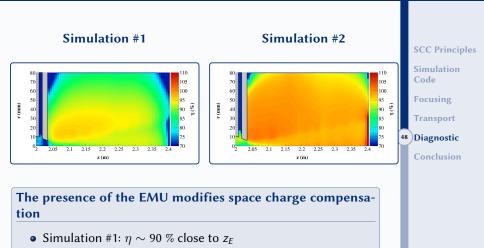
Simulation #1 the W plate does not emit secondary electrons Simulation #2 the W plate does emit secondary electrons

Simulation Results at Steady State



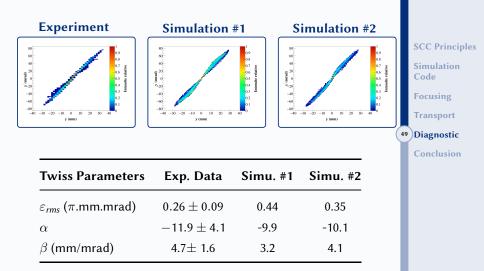
Space charge compensation η 30 µs

Simulation Results at steady state



Space charge compensation η at fter 30 μs

Simulation Results at steady state



• Simulation #2: $\eta > 100 \%$ close to z_E

Emittance Measurement: Experimental Data vs Simulations

Overview

- **1** Space Charge Compensation Basic Principles
- 2 Simulation Code
- Beam Focusing in a LEBT
- Beam transport in a LEBT
- Interceptive Diagnostic Simulation
- **6** Conclusion and Perspectives

Conclusions and Perspectives

Conclusion

- Simulation of beam transport in a LEBT
- More physics in the models
- Codes like Warp are precious tools to reach a better understanding of the beam dynamics in LEBTs
- It is mandatory to simulated the interceptive diagnostics used in LEBTs

Conclusions and Perspectives

Conclusion

- Simulation of beam transport in a LEBT
- More physics in the models
- Codes like Warp are precious tools to reach a better understanding of the beam dynamics in LEBTs
- It is mandatory to simulated the interceptive diagnostics used in LEBTs

Perspectives

- Perform better simulations (and understanding) of the ion source extraction system
- Collect more robust experimental data from different LEBTs
- A lot of work ahead to obtain results that are quantitatively reliable

Conclusions and Perspectives

Conclusion

- Simulation of beam transport in a LEBT
- More physics in the models
- Codes like Warp are precious tools to reach a better understanding of the beam dynamics in LEBTs
- It is mandatory to simulated the interceptive diagnostics used in LEBTs

F. Gérardin.

Étude de la compensation de la charge d'espace dans les lignes basse énergie des accélérateurs

d'ions légers de haute intensité. PhD Dissertation, Université Paris-Saclay, 2018.

Thank you for your attention !

SCC Principles Simulation Code Focusing Transport Diagnostic 51 Conclusion