Paper | Title | Page |
---|---|---|
MOAM5P50 | LHC Run 2: Results and Challenges | 14 |
|
||
The first proton run of the LHC was very successful and resulted in important physics discoveries. It was followed by a two-year shutdown where a large number of improvements were carried out. In 2015, the LHC was restarted and this second run aims at further exploring the physics of the standard model and beyond at an increased beam energy. This article gives a review of the performance achieved so far and the limitations encountered, as well as the future challenges for the CERN accelerators to maximize the data delivered to the LHC experiments in Run 2. Furthermore, the status of the 2016 LHC run and commissioning is discussed. | ||
![]() |
Slides MOAM5P50 [9.283 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUAM2X01 | Measurement and Interpretation of Transverse Beam Instabilities in the CERN Large Hadron Collider (LHC) and Extrapolations to HL-LHC | 254 |
|
||
Since the first transverse instability observed in 2010, many studies have been performed on both measurement and simulation sides and several lessons have been learned. In a machine like the LHC, not only all the mechanisms have to be understood separately, but the possible interplays between the different phenomena need to be analyzed in detail, including the beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities for HL-LHC), linear and nonlinear chromaticity, Landau octupoles (and other intrinsic nonlinearities), transverse damper, space charge, beam-beam (long-range and head-on), electron cloud, linear coupling strength, tune separation between the transverse planes, tune split between the two beams, transverse beam separation between the two beams, etc. This paper reviews all the transverse beam instabilities observed and simulated so far, the mitigation measures which have been put in place, the remaining questions and challenges and some recommendations for the future. | ||
![]() |
Slides TUAM2X01 [36.385 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEAM5X01 | Beam-Dynamics Issues in the FCC | 373 |
|
||
Funding: European Commission under the Capacities 7th Framework Programme project EuCARD-2, grant agreement 312453, and the HORIZON 2020 project EuroCirCol, grant agreement 654305. Also by the German BMBF. The international Future Circular Collider (FCC) study is designing hadron, lepton and lepton-hadron colliders based on a new 100 km tunnel in the Geneva region. The main focus and ultimate goal of the study are high-luminosity proton-proton collisions at a centre-of-mass energy of 100 TeV, using 16 T Nb3Sn dipole magnets. Specific FCC beam dynamics issues are related to the large circumference, the high brightness - made available by radiation damping -, the small geometric emittance, unprecedented collision energy and luminosity, the huge amount of energy stored in the beam, large synchrotron radiation power, plus the injection scenarios. In addition to the FCC-hh proper, also a High-Energy LHC (HE-LHC) is being explored, using the FCC-hh magnet technology in the existing LHC tunnel, which can yield a centre-of-mass energy around 25 TeV. |
||
![]() |
Slides WEAM5X01 [10.402 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |