Paper | Title | Page |
---|---|---|
MOPM1P80 | Accelerator Physics Challenges in FRIB Driver Linac | 27 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 FRIB is a heavy ion linac facility to accelerate all stable ions to the energy of 200 MeV/u with the beam power of 400 kW, which is under construction at Michigan State University in USA. FRIB driver linac is a beam power frontier accelerator aiming to realize two orders of magnitude higher beam power than existing facilities. It consists of more than 300 low-beta superconducting cavities with unique folded layout to fit into the existing campus with innovative features including multi charge state acceleration. In this talk, we overview accelerator physics challenges in FRIB driver linac with highlight on recent progresses and activities preparing for the coming beam commissioning. |
||
![]() |
Slides MOPM1P80 [22.790 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUAM6Y01 |
Experimental Investigation of Emittance Exchange in J-PARC Linac With Non-Equipartitioning Setting | |
|
||
J-PARC is on the way to 1 MW operation step by step. J-PARC linac complected upgrade to 50 mA/400MeV in 2014, and the next main tasks of beam study are to optimize beam loss and output emittance for 40 mA and 50 mA operation. Residue radiation level at a lower repetition predicted that the beam loss becomes close to the maintenance limit in case of full operation at 50 mA. And intra-beam stripping (IBSt) effect in the H− beam is found to be the dominant source of the beam loss here. IBSt is only sensitive to lattice, so that the only solution is to be away from J-PARC baseline design with equipartitioning condition, in a safe way. In the previous work, emittace exchange and break of periodicity were predicted by the simulation and they are consistent with the "Hofmann chart". Series of experiments were carried out, not only for investigation of new lattice with controlled beam loss and emittance but also for a better understanding of rules of lattice optimization and the physics behind. | ||
![]() |
Slides TUAM6Y01 [3.155 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPM8X01 | Collimation Design and Beam Loss Detection at FRIB | 400 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. As a multi-charge-state, heavy-ion, superconducting accelerator with a folded geometry, FRIB faces unique beam loss detection and collimation challenges to protect superconducting cavities from beam-induced damage. Collimation is especially important in the Folding Segment 1 where the multiple charge states are created by a charge stripper and selected by a charge selector. The transported ECR contaminants, interaction with the residual gas, and beam halo due to stripping could induced significant beam losses in this region. We have simulated the potential beam losses and planned collimation accordingly. A layered loss detection network is also specifically designed to visualize potential blind zones and to meet the stringent requirements on loss detection. The related sub-systems are designed and procured and are introduced in this paper. |
||
![]() |
Slides WEPM8X01 [1.662 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |