Author: Lebedev, V.A.
Paper Title Page
MOAM7P70
Fermilab PIP-II Status and Strategy  
 
  • C.S. Mishra, P. Derwent, S.D. Holmes, V.A. Lebedev, D.V. Mitchell
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi Research Alliance under U.S. Department of Energy contract number DE-AC02-07CH11359
Proton Improvement Plan-II (PIP-II) is the centerpiece of Fermilab’s plan for upgrading the accelerator complex to establish the leading facility in the world for particle physics research based on intense proton beams. PIP-II has been developed to provide 1.2 MW of proton beam power at the start of operations of the Long Baseline Neutrino Experiment (LBNE), while simultaneously providing a platform for eventual extension of LBNE beam power to >2 MW and enabling future initiatives in rare processes research based on high duty factor/higher beam power operations. PIP-II is based on the construction of a new, 800 MeV, superconducting linac, augmented by improvements to the existing Booster, Recycler, and Main Injector complex. PIP-II is currently in the development stage with an R&D program underway targeting the front end and superconducting rf acceleration technologies. This paper will describe the status of the PIP-II conceptual development, the associated technology R&D programs, and the strategy for project implementation.
 
slides icon Slides MOAM7P70 [10.127 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPR033 Beam Acceleration and Transition Crossing in the Fermilab Booster 160
 
  • V.A. Lebedev, C.M. Bhat, J.-F. Ostiguy
    Fermilab, Batavia, Illinois, USA
 
  To suppress eddy currents, the Fermilab rapid cycling Booster synchrotron has no beam pipe; rather, its combined function dipoles are evacuated, exposing the beam directly to the magnet laminations. This arrangement significantly increases the resistive wall impedance of the dipoles and, in combination with the space charge impedance, substantially complicates longitudinal dynamics at transition. Voltage and accelerating phase profiles in the vicinity of transition are typically empirically optimized to minimize beam loss and emittance growth. In this contribution, we present results of experimental studies of beam acceleration near transition. Using comparisons between observed beam parameters and simulations, we obtain accurate calibrations for the RF program and extract quantitative information about parameters of relevance to the Booster laminated magnets longitudinal impedance model. The results are used to analyze transition crossing in the context of a future 50% increase in beam intensity planned for PIP-II, an upgrade of the Fermilab accelerating complex.  
poster icon Poster MOPR033 [0.231 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPR034 Suppression of Half-Integer Resonance in Fermilab Booster 164
 
  • V.A. Lebedev, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  The particle losses at injection in the FNAL Booster are one of the major factors limiting the machine performance. The losses are caused by motion non-linearity due to direct space charge and due to non-linearity introduced by large values of chromaticity sextupoles required to suppress transverse instabilities. The report aims to address the former - the suppression of incoherent space charge effects by reducing deviations from the perfect periodicity of linear optics functions. It should be achieved by high accuracy optics measurements with subsequent optics correction and by removing known sources of optics perturbations. The study shows significant impact of optics correction on the half-integer stop band with subsequent reduction of particle loss. We use realistic Booster lattice model to understand the present limitations, and investigate the possible improvements which would allow high intensity operation with PIP-II parameters.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPR035 Electron Lens for the Fermilab Integrable Optics Test Accelerator 170
 
  • G. Stancari, A.V. Burov, K. Carlson, D.J. Crawford, V.A. Lebedev, J.R. Leibfritz, M.W. McGee, S. Nagaitsev, L.E. Nobrega, C.S. Park, E. Prebys, A.L. Romanov, J. Ruan, V.D. Shiltsev, Y.-M. Shin, J.C.T. Thangaraj, A. Valishev
    Fermilab, Batavia, Illinois, USA
  • D. Noll
    IAP, Frankfurt am Main, Germany
  • Y.-M. Shin
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the US Department of Energy.
The Integrable Optics Test Accelerator (IOTA) is a research machine currently being designed and built at Fermilab. The research program includes the study of nonlinear integrable lattices, beam dynamics with self fields, and optical stochastic cooling. One section of the ring will contain an electron lens, a low-energy magnetized electron beam overlapping with the circulating beam. The electron lens can work as a nonlinear element, as an electron cooler, or as a space-charge compensator. We describe the physical principles, experiment design, and hardware implementation plans for the IOTA electron lens.
 
poster icon Poster MOPR035 [5.399 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)