Keyword: linac
Paper Title Other Keywords Page
MO4C2 Development of a Compact Light Source using a Two-beam-acceleration Technique electron, emittance, cathode, brightness 42
 
  • P. Piot, E.A. Frame, X. Lu
    Northern Illinois University, DeKalb, Illinois, USA
  • G. Chen, C.-J. Jing, X. Lu, J.G. Power
    ANL, Lemont, Illinois, USA
  • C.-J. Jing, S.V. Kuzikov
    Euclid Beamlabs, Bolingbrook, USA
 
  Funding: This work is supported by the U.S. DOE, under award No. DE-AC02-06CH11357 with ANL. This work is partially supported by Laboratory Directed Research and Development (LDRD) funding at ANL.
The recent demonstration of sub-GV/m accelerating fields at X-band frequencies* offers an alternative pathway to designing a compact light source. The high fields were enabled by powering the accelerating structures using short (<10 ns) X-band RF pulses produced via a two-beam-accelerator (TBA) scheme. In this contribution, we present a conceptual design to scale the concept to a ~0.5 GeV accelerator. We present the optimization of the photoinjector and preliminary beam-dynamics modeling of the accelerator. Finally, we will discuss ongoing and planned experiments toward developing an integrated proof-of-principle experiment at Argonne National Laboratory combining the 0.5 GeV linac with a free-electron laser.
* W.H. Tan, et al. DOI: 10.1103/PhysRevAccelBeams.25.083402 (2022).
 
slides icon Slides MO4C2 [2.690 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-MO4C2  
About • Received ※ 31 August 2023 — Revised ※ 31 August 2023 — Accepted ※ 01 September 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU3B3 Pyapas: A New Framework for High Level Application Development at HEPS framework, MMI, booster, controls 77
 
  • X.H. Lu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • D. Ji, H.F. Ji, Y. Jiao, J.Y. Li, N. Li, C. Meng, Y.M. Peng, J. Wan, Y. Wei, G. Xu, H.S. Xu, Y.L. Zhao
    IHEP, Beijing, People’s Republic of China
 
  The development of high-level application (HLA) is an indispensable part of the light source construction process. With the increase in the scale and complexity of accelerators, the development of HLA will also face many new challenges, such as increased data volume, multiple data types, more parameter channels, and more complex tuning algorithms. So a new framework named Pyapas has been designed for HLA development which aims to provide a high-performance, scalable, flexible, and reliable HLA development framework to meet the needs of large-scale parameter tuning and data processing. Pyapas is designed with a modular concept, decomposing the development needs of HLA into different modules for decoupled development, and calling them through simple interfaces. In the communication module, a singleton factory class is designed to avoid duplicate creation of channel connections, and combined with Qt’s signal-slot mechanism to create non-blocking communication connections, greatly improving the carrying capacity of parameter scale. While a deeply decoupled two-layer physical model module is designed to quickly switch different mathematical models to meet different online computing needs. Moreover, the design of the C/S architecture development module and the rapid creation and management module of the database is helpful for quickly developing complex programs, further enhancing the applicability of Pyapas. This paper will introduce the main feature of Pyapas  
slides icon Slides TU3B3 [6.913 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU3B3  
About • Received ※ 30 August 2023 — Revised ※ 31 August 2023 — Accepted ※ 01 September 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P07 Design of the Beam Distribution System of SHINE undulator, kicker, electron, FEL 87
 
  • S. Chen
    SSRF, Shanghai, People’s Republic of China
  • H.X. Deng, X. Fu, B. Liu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • B.Y. Yan
    SINAP, Shanghai, People’s Republic of China
 
  The Shanghai high-repetition-rate XFEL and extreme light facility (SHINE), as the first hard X-ray free electron laser facility in China, is now under construction. CW electron beam with up to 1 MHz bunch repetition rate from a superconducting RF linac is used to feed at least three individual undulator lines that covers a wide photon energy range (0.4 keV ~ 25 keV). In order to maximize the efficiency of the facility, a beam switchyard between the linac and undulator lines is used to enable the simultaneously operation of the three undulator lines. In this work, the schematic design of the beam switchyard for bunch-by-bunch beam separation of CW beam is described, and the current lattice design of the linac-to-undulator deflection branches and the start-to-end tracking simulation results are presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P07  
About • Received ※ 22 August 2023 — Revised ※ 28 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P08 Design and Commissioning of the Beam Switchyard for the SXFEL-UF FEL, emittance, MMI, undulator 91
 
  • S. Chen, K.Q. Zhang
    SSRF, Shanghai, People’s Republic of China
  • H.X. Deng, C. Feng, B. Liu, T. Liu, Z. Qi, Z.T. Zhao
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  As an important measure of improving the efficiency and usability of X-ray free electron laser facilities, parallel operation of multiple undulator lines realized by a beam switchyard has become a standard configuration in the recent built XFEL facilities. SXFEL-UF, the first soft X-ray free electron laser user facility in China, has finished construction and commissioning recently. The electron beams from the linac are separated and delivered alternately to the two parallel undulator beam lines through a beam switchyard. A stable and fast kicker magnet is used to achieve bunch-by-bunch separation. Optics measures are applied to mitigate the impact of various collective effects, such as coherent synchrotron radiation and micro-bunching instability, on the beam quality after passing through the deflection line of the beam switchyard. In this study, the comprehensive physical design of the beam switchyard is described and the latest results of its commissioning process are presented.  
poster icon Poster TU4P08 [4.643 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P08  
About • Received ※ 23 August 2023 — Revised ※ 30 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P12 Injection Into XFELs, a Review of Trends and Challenges FEL, gun, electron, emittance 99
 
  • C. Davut
    UMAN, Manchester, United Kingdom
  • Ö. Apsimon
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • B.L. Militsyn, S.S. Percival
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Science and Technology Facilities Council, STFC
In this contribution, we review the low-energy electron injectors for existing X-ray Free-Electron Laser (XFEL) facilities focusing on the buncher and booster sections. The technology choices are parallel to the increasing demand for stricter six-dimensional phase space quality. The current capability for beam parameters and future requirements are laid out alongside a discussion on challenges and technological bottlenecks. In light of this review, preliminary results for a high capability injector providing high repetition rate, and continuous wave emission is presented as an option for the UK XFEL.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P12  
About • Received ※ 23 August 2023 — Revised ※ 24 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TU4P27 Progress of the HEPS Accelerator Construction and Linac Commissioning booster, MMI, storage-ring, photon 131
 
  • C. Meng, J.S. Cao, Z. Duan, D.Y. He, P. He, H.F. Ji, Y. Jiao, W. Kang, J. Li, J.Y. Li, W.M. Pan, Y.M. Peng, H. Qu, S.K. Tian, G. Xu, H.S. Xu, J. Zhang, J.R. Zhang
    IHEP, Beijing, People’s Republic of China
  • X.H. Lu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The High Energy Photon Source (HEPS) is the first fourth-generation synchrotron radiation source in China that has been on the track for construction. The accelerator complex of the light source is composed of a 7BA storage ring, a booster injector, a Linac pre-injector, and three transfer lines. In order to provide high-bunch-charge beams for the storage ring, the booster was designed to be capable of both beam acceleration from low injection energy to extraction energy and charge accumulation at the extraction energy by means of accepting electron bunches from the storage ring. The Linac was built using S-band normal conducting structures, and can provide electron beam with pulse charge up to 7 nC. This paper reports the progress of the construction of the accelerators, including the installation of the storage ring, the pre-commissioning tests of the booster, and commissioning of the Linac. In particular, the beam commissioning of the Linac will be introduced in detail.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TU4P27  
About • Received ※ 29 August 2023 — Revised ※ 29 August 2023 — Accepted ※ 30 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE4P09 Heat Load and Radiation Pulse of Corrugated Structure at SHINE Facility radiation, simulation, wakefield, electron 168
 
  • J.J. Guo
    Zhangjiang Lab, Shanghai, People’s Republic of China
  • H.X. Deng, D. Gu, Q. Gu, M. Meng, Z. Wang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  Corrugated structure modules are being proposed for installation after the end of the linac and before the undulator regions of SHINE facility, where it has been used for energy chirp control and as a fast kicker for two color operation of the FEL. When ultra-relativistic bunch of electrons passing through corrugated structure will generate strong wakefield, we find most of the wake power lost by the beam is radiated out to the sides of the corrugated structure in the form of THz waves, and the remaining part casue Joule heating load on the corrugated structure wall. In this paper, we estimate the radiation pulse power and Joule power loss of the corrugated structure in SHINE facility.  
poster icon Poster WE4P09 [0.787 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P09  
About • Received ※ 23 August 2023 — Revised ※ 28 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE4P13 Physics Design and Beam Dynamics Optimization of the SHINE Accelerator electron, FEL, emittance, cryomodule 174
 
  • D. Gu, Z. Wang, M. Zhang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  Shanghai HIgh Repetition Rate X-ray Free Electron Laser and Extreme Light Facility (SHINE) is a hard X-ray FEL facility which is driven by a 1.3 km supercon-ducting Linac, aims to provide high repetition rate pulses up to 1 MHz . In this study, we present the physics design of the SHINE accelerator and considerations of beam dynamics optimizations. Start-to-end simulation results show that, a high brightness electron beam with over 1500 A quasi-flat-top current can be attained which fully meet the requirements of FEL lines. Furthermore, design of the bypass line is also discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P13  
About • Received ※ 23 August 2023 — Revised ※ 30 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE4P14 Layout of the Undulator-to-dump line at the SHINE electron, FEL, undulator, radiation 177
 
  • T. Liu, S. Chen, H.X. Deng, B. Liu, Z. Qi
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • Z.F. Gao
    SSRF, Shanghai, People’s Republic of China
  • N. Huang
    Zhangjiang Lab, Shanghai, People’s Republic of China
 
  The Shanghai HIgh repetitioN rate XFEL and Extreme light Facility as the first hard X-ray free-electron laser (FEL) facility in China, is currently under construction in the Zhangjiang area, Shanghai. It aims to deliver X-ray covering photon energy range from 0.4 to 25 keV, with electron beam power up to 800 kW. Downstream of the undulator line, the beam transport design of the undulator-to-dump line is critical which is mainly used for realization of FEL diagnostics based on transverse deflecting structure and beam absorption in the dump. In this manuscript we describe the current layout of this system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P14  
About • Received ※ 20 August 2023 — Revised ※ 22 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH4A2 A Compact Inverse Compton Scattering Source Based on X-band Technology and Cavity-enhanced High Average Power Ultrafast Lasers photon, laser, electron, scattering 257
 
  • A. Latina, R. Corsini, L.A. Dyks, E. Granados, A. Grudiev, V. Mușat, S. Stapnes, P. Wang, W. Wuensch
    CERN, Meyrin, Switzerland
  • E. Cormier
    CELIA, Talence, France
  • G. Santarelli
    ILE, Palaiseau Cedex, France
 
  A high-pulse-current photoinjector followed by a short high-gradient X-band linac and a Fabry-Pérot enhancement cavity are considered as a driver for a compact Inverse Compton Scattering (ICS) source. Using a high-power ultra-short pulse laser operating in burst mode in a Fabry-Pérot enhancement cavity, we show that outcoming photons with a total flux over 1013 and energies in the MeV range are achievable. The resulting high-intensity and high-energy photons allow various applications, including cancer therapy, tomography, and nuclear material detection. A preliminary conceptual design of such a compact ICS source and simulations of the expected performance are presented.  
slides icon Slides TH4A2 [2.962 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-TH4A2  
About • Received ※ 22 August 2023 — Revised ※ 26 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)